
UltraFast High-Level
Productivity Design
Methodology Guide
UG1197 (v2018.2) June 6, 2018
UG1197 (v2018.3) December 5, 2018

UltraFast High-Level Productivity Design Methodology Guide 2
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary

06/06/2018 Version 2018.2

Vivado HLS Design Flow Updated the Vivado HLS Design Flow.

Send Feedback
UG1197 (v2018.3) December 5, 2018

12/05/2018: Released with Vivado® Design Suite 2018.3 without changes from 2018.2.

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=2

Table of Contents
Revision History . 2

Chapter 1: High-Level Productivity Design Methodology
About This Guide . 5
Need for a New Design Methodology . 6
Design Process . 9
Accessing Documentation and Training . 10

Chapter 2: System Design
Overview. 12
System Partitioning . 12
System Development. 16

Chapter 3: Shell Development
Overview. 23
Shell Design . 24
Shell Verification . 26

Chapter 4: C-Based IP Development
Overview. 29
Fast C Verification . 30
C Language Support for Synthesis. 35
Using Hardware Optimized C Libraries. 39
Understanding Vivado HLS . 39
Optimization Methodology . 45
Optimization Strategies . 55
RTL Verification . 58
IP Packaging . 59
Design Analysis and Optimization . 59

Chapter 5: System Integration
Overview. 63
Initial System Integration . 63
UltraFast High-Level Productivity Design Methodology Guide 3
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=3

Automated System Integration. 66
Designing for the Future . 69

Appendix A: Additional Resources and Legal Notices
Xilinx Resources . 72
Solution Centers. 72
Documentation Navigator and Design Hubs . 72
References . 73
Training Resources. 73
Please Read: Important Legal Notices . 74
UltraFast High-Level Productivity Design Methodology Guide 4
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=4

Chapter 1

High-Level Productivity Design
Methodology

About This Guide
Xilinx® programmable devices have capacities of multi-million Logic Cells (LC), and
integrate an ever-increasing share of today’s complex electronic systems. This High-Level
Productivity Design Methodology provides a set of best practices to create such complex
systems within short design cycles.

The methodology focuses on the following concepts:

• Using parallel development flows for the valuable differentiated logic which
differentiates your products in the marketplace and the shell used to integrate the
differentiated logic with the rest of the ecosystem.

• Extensive use of a C-based IP development flow for the differentiated logic to provide
simulations that are orders of magnitude faster than RTL simulations, as well as
accurately timed and optimized RTL.

• Use of existing pre-verified, block, and component-level IP to quickly build the shell
which encapsulates your differentiated logic in the system.

• Use of scripts to highly automate the flow from accurate design validation through to
programmed FPGA.

The recommendations in this guide have been gathered from a large pool of expert users
over the past few years. They have consistently delivered the following improvements over
traditional RTL design methodologies:

• 4X speed up in development time for designs.

• 10X speed up in the development time for derivative designs.

• 0.7X to 1.2X the Quality of Results (QoR).
UltraFast High-Level Productivity Design Methodology Guide 5
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=5

Chapter 1: High-Level Productivity Design Methodology
Although this guide focuses on large complex designs, the practices discussed are suitable
for, and have successfully been applied in, all types of design including:

• Digital Signal Processing:

° Image processing

° Video

° Radar

• Automotive

• Processor acceleration

• Wireless

• Storage

• Control systems

Need for a New Design Methodology
The advanced designs used in today’s increasingly complex electronic products are
stretching the boundaries of density, performance, and power. They create a challenge for
design teams to hit a target release window within their allocated budget.

A productive methodology for addressing these design challenges is one where more time
is spent at higher levels of abstraction, where verification times are the fastest and
productivity gains are the greatest.

The need for a new design methodology is highlighted in the following figure, where the
area of each region represents the percentage of development effort at each stage of the
design flow.

• With a traditional RTL methodology most of the effort is spent on the implementation
details.

• In a high-level productivity design methodology, most of the effort is spent designing
and verifying you are building the right system.
UltraFast High-Level Productivity Design Methodology Guide 6
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=6

Chapter 1: High-Level Productivity Design Methodology
Traditional Methodology
Traditional design development starts with experienced designers estimating how their
design will be implemented in a new technology, capturing the design in Register Transfer
Levels (RTLs), performing a few trials through synthesis and place and route to confirm their
estimations and then proceeding to capture the remainder of the design. This is done while
typically synthesizing each block in turn to re-confirm that the implementation details are
acceptable.

The primary method for confirming that the design provides the intended functionality is to
simulate the RTL. The detailed bit-accurate and cycle-accurate nature of an RTL description,
although highly accurate, makes this process both slow and error prone.

Only when all blocks in the design have been captured in RTL can a full verification of the
system be performed, often resulting in adjustments to the RTL. After all blocks in the
system have been verified, they can be placed and routed together, and the accuracy of
earlier estimations of timing and area can be either fully confirmed or shown to be
inaccurate. This also often results in changes to the RTL, re-initiating another verification of
the system and another re-implementation.

Designers are now often required to implement hundreds of thousands of lines of RTL code
in a given project and spend much of their design time on implementation details. As
highlighted in Figure 1-1, designers spend considerably more of their time implementing
the design, rather than designing the novel and innovative solutions that all products
require to remain competitive.

X-Ref Target - Figure 1-1

Figure 1-1: High-Level Productivity Design Methodology Comparison
UltraFast High-Level Productivity Design Methodology Guide 7
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=7

Chapter 1: High-Level Productivity Design Methodology
Moving to a newer technology to improve performance or a slower technology to provide
more competitive pricing often means the majority of the RTL has to be re-written;
designers must re-implement the amount of logic between the registers.

High-Level Productivity Design Methodology
The High-Level Productivity Design Methodology traverses the same basic steps as a more
traditional RTL methodology, as shown in Figure 1-1. However, it allows designers to spend
more time designing value-add solutions. The main attributes of a high productivity
methodology are:

• The concept of a shell that is developed and verified in parallel with the differentiated
logic. This shell encompasses the differentiated logic that captures the I/O peripherals
and interfaces in a separate design project

• Using C-based IP simulation to decrease simulation times by orders of magnitude over
traditional RTL simulation, providing designers the time to design the ideal solution.

• Using the Xilinx Vivado® Design Suite to highly automate the path to timing closure
through the use of C-based IP development, IP re-use and standard interfaces.

° Making use of the Vivado IP Catalog to easily re-use your own block and
component level IP and provide easy access to the Xilinx IP already verified and
known to implement well in the technology.

All steps in the High-Level Productivity Design Methodology can be performed interactively
or using command line scripts. The result of all manual interactions can be saved to scripts,
allowing the entire flow to be fully automated, from the design simulation through to
programming the FPGA. Depending on your design and the runtime of the RTL system level
simulation, this flow makes it possible to generate an FPGA bitstream and test the design
on the board, often before any RTL design simulation has completed.

Even greater productivity improvements come when design derivatives are created.
C-based IP is easily targeted to different devices, technologies, and clock speeds: as easy as
changing a tool option. A fully scripted flow, with automated timing closure through C
synthesis, means derivative designs can be quickly verified and assembled.
UltraFast High-Level Productivity Design Methodology Guide 8
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=8

Chapter 1: High-Level Productivity Design Methodology
Design Process
The steps in the design process are shown in the following figure.

After the initial stage of system partitioning, described in Chapter 2, System Design, a key
feature of this design flow is the overlapping nature of the development.

• A Shell Development Flow: Through the use of Vivado IP Integrator and the IP
Catalog, the Vivado Design Suite enables fast, efficient block-level integration. Much of
the critical aspects for system performance, including detail orientated interface
creation, verification, and pin-planning, can be separated into a parallel development
effort and given the focus they require. This flow is described in Chapter 3, Shell
Development.

• C Based IP Development: It takes approximately 1 or 2 days to simulate a full frame of
video using RTL simulation (depending on the design, the host machine, etc.). It takes
approximately 10 seconds to perform the same bit-level accurate simulation using

X-Ref Target - Figure 1-2

Figure 1-2: High-Level Productivity Design Flow
UltraFast High-Level Productivity Design Methodology Guide 9
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=9

Chapter 1: High-Level Productivity Design Methodology
C/C++. The productivity benefits of a C-based development flow cannot be ignored.
This flow is described in Chapter 4, C-Based IP Development.

• System Creation: Vivado IP integrator and the IP catalog allow C-based IP to be
quickly combined into a system block design using the shell design, legacy RTL IP,
System Generator IP, and Xilinx IP. Automated interface connections and the ability to
script the system creation mean that the system can be generated and re-generated
quickly throughout the IP development process. This flow is described in Chapter 5,
System Integration.

• System Implementation: You can ensure that minimal time is spent on design closure
by using a shell design that is already verified, C-based IP automatically optimized for
the device and clock frequency, and existing verified IP, all connected through industry
standard Arm AMBA® AXI4 protocol-compliant interfaces. This flow is launched from
the system block design with a few clicks of the mouse or using a scripted flow. This
flow is described in Chapter 5, System Integration.

• System Verification: This is be performed using gate-level accurate RTL simulations
and/or by programing the FPGA and verifying the design on the board. Because the
RTL simulations are used to verify the system—not the iterative simulations used to
validate the design during development—only a single simulation is required at the
end of the design flow. This flow is described in Chapter 5, System Integration.

Accessing Documentation and Training
Access to the right information at the right time is critical for timely design closure and
overall design success. Reference guides, user guides, tutorials, and videos get you up to
speed as quickly as possible with the Vivado Design Suite. This section lists some of the
sources for documentation and training.

Using the Documentation Navigator
The Vivado Design Suite ships with the Xilinx Documentation Navigator, as shown in
Figure 1-3, which provides an environment to access and manage the entire set of Xilinx
software and hardware documentation, training, and support materials. The Documentation
Navigator allows you to view current and past Xilinx documentation. You can filter the
documentation display based on release, document type, or design task. When coupled
with a search capability, you can quickly find the right information. Methodology Guides
appear as one of the filters under Document Types, which allows you to reach any of
Methodology Guides almost instantaneously.

Xilinx uses the Documentation Navigator to provide you with up-to-date documentation
using the Update Catalog feature. This feature alerts you about available catalog updates
and provides details about the documents that are involved. Xilinx recommends that you
UltraFast High-Level Productivity Design Methodology Guide 10
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=10

Chapter 1: High-Level Productivity Design Methodology
always update the catalog when alerted to keep it current. Additionally, you can establish
and manage local documentation catalogs with specified documents.

The Documentation Navigator has a tab called the Design Hub View. Design hubs are
collections of documentation related by design activity, such as Applying Design
Constraints, Synthesis, Implementation, and Programming and Debug. Documents and
videos are organized in each hub in order to simplify the learning curve for that area. Each
hub contains sections such as Getting Started, Support Resources (with an FAQ for that
flow), and Additional Learning Materials. For new users, the Getting Started section
provides a good place to start. For those already familiar with the flow, Key Concepts and
the FAQ may be of particular interest to gain expertise with the Vivado Design Suite.

X-Ref Target - Figure 1-3

Figure 1-3: Xilinx Documentation Navigator
UltraFast High-Level Productivity Design Methodology Guide 11
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=11

Chapter 2

System Design

Overview
Before starting on your project, it is important to have a clear understanding of how you will
design and assemble your system. In any complex system, there are multiple paths to a
solution. These paths are dictated by the various choices you make on what IP blocks to
create from scratch, what IP you can re-use, and the tools and methodology used to
validate the IP, integrate the IP in a system, and verify the system.

This chapter addresses the system partitioning choices you will make and reviews key
features of the Vivado® Design Suite which help automate the process of system
development.

• System Partitioning

• System Development

System Partitioning
In a typical design, the logic on the periphery of the design is dedicated to interfacing with
external devices, typically using standard interfaces. Example of this are DDR, Gigabit
Ethernet, PCIe, HDMI, ADC/DAC, and Aurora interfaces. These interfaces and the
components used to implement them are typically standard to multiple FPGA designs
within the same company.

In the High-Level Productivity Design Methodology this logic is separated from the
differentiated logic and is considered the shell. The figure below shows an example shell
block design. The shaded area in the center of the figure below indicates where the
differentiated logic or shell verification IP can be added.
UltraFast High-Level Productivity Design Methodology Guide 12
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=12

Chapter 2: System Design
Key benefits of this methodology are:

• The shell is developed and verified independently of the rest of the design.

• Board-level integration and device pin planning are addressed by a separate dedicated
team working in parallel.

• The shell is saved and re-used (even re-edited), allowing multiple derivative designs to
be quickly realized.

• The differentiated logic is developed and verified independently of the shell.

• The pre-verified shell and differentiated logic are quickly integrated into a complete
system.

When partitioning your system, the first task is to determine what will be implemented in
the shell and what will be implemented as differentiated logic.

Shell Design
A shell design provides two key attributes to a high productivity methodology:

• Separating standard interface logic from the differentiated logic, allowing the
development and verification of both to proceed in parallel.

X-Ref Target - Figure 2-1

Figure 2-1: Shell Design Example
UltraFast High-Level Productivity Design Methodology Guide 13
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=13

Chapter 2: System Design
• Creating a re-usable design, or shell, that can be used to quickly create design
derivatives. A shell should ideally contain the parts of the design that are standard,
such as design interfaces and interface IP. However, a shell can also contain blocks used
for pre-processing or post-processing. If the processing functions are independent of
the core design IP, and if the processing functions could be used across multiple
designs, it is more ideal to place these blocks in the shell. The shell re-use
methodology allows blocks to be easily removed from the shell.

Irrespective of the logic you decide to incorporate into the shell design, a key attribute of
the shell design is that the internal interfaces, those which connect to the internal design IP,
should be implemented using standard interfaces. Use of standard internal interfaces such
as AXI will enhance the shell re-use by doing the following:

• Allowing the shell to be easily connected to a design IP that has yet to be developed

• Ensuring that verification of the shell also verifies the internal interfaces

• Enabling use of the high productivity integration features described in IP Integrator
and Standard Interfaces

Even if you are initially only thinking of one design, a shell based methodology allows you
to easily create derivative designs after the initial design is implemented.

More details about shell development and verification are described in Chapter 3, Shell
Development.

IP Design
The key feature of the IP development flow is that it includes only the IP that differentiates
the product from the shell.

The design IP is not standard and will be developed. Much of the development effort is
running simulations to validate that the design provides the correct functionality. This effort
can be minimized, and simulation run times improved, by not including standard blocks
that do not impact the new functionality being developed; those blocks should be in the
shell.

The figure below shows a representation of a complete system with design IP added to the
shell design. A key feature of the completed system is that it might contain IP developed
from many different sources, such as:

• IP generated from C/C++ using Vivado HLS

• IP generated from System Generator

• IP from RTL

• Xilinx® IP

• Third-Party IP
UltraFast High-Level Productivity Design Methodology Guide 14
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=14

Chapter 2: System Design
In a high productivity design methodology, one of the greatest benefits comes from the
verification speed of C simulation. From a design creation perspective, there is large
productivity gain by simulating the C blocks together during development.

• Fast C simulation allows the designer to quickly develop and verify an accurate
solution.

• Multiple C blocks simulated together help each verify the output of the other.

• A larger overall productivity benefit can be achieved if several C IP are combined
together in a C simulation.

The figure above, Figure 2-2, highlights a dilemma you may face when using C IP. Blocks U1,
U2, and U3 are all C IP and could be grouped into a single top-level U123. Similarly, blocks
U6 and U7 could be grouped into a single IP block, U67. You can do one of the following:

• Create multiple smaller C IP blocks, such as U1, U2, U3, U6 and U7.

• Create a few large C IP blocks, such as U123 and U67 outlined in the figure above.

From a design integration perspective, there is no difference between these methods; if the
IP blocks are generated with AXI interfaces, they are easily integrated together using IP
integrator. For designers who are new to C-based IP development, it might make more
sense to work on smaller blocks, learn how to optimize each small block independently, and
then integrate multiple smaller IPs together. For designers who are comfortable with C IP
development, it might make more sense to generate a few large C IP blocks.

IMPORTANT: The key productivity benefit is being able to simulate as many C IP blocks as one C
simulation during development.

X-Ref Target - Figure 2-2

Figure 2-2: System Design Example
UltraFast High-Level Productivity Design Methodology Guide 15
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=15

Chapter 2: System Design
In the situation described above, the same C test bench that verifies blocks U1, U2, and U3
would be used to verify U123. The difference in IP generation is that you either set the top
level for C synthesis in Vivado HLS as function U123, or as function U1 followed by U2 and
U3.

Regardless of which route is taken to create the IP blocks, each of the IP blocks should be
verified in isolation as follows:

• IP developed from C/C++ is verified using the C/RTL co-simulation feature of Vivado
HLS, allowing the RTL to be verified using the same C test bench used to verify the C
based IP.

• IP developed from System Generator is verified using the MathWorks Simulink design
environment provided in System Generator. The Simulink environment enables the easy
generation of complex input stimuli and analysis of complex results through the use of
pre-defined simulation elements. IP generated from C/C++ and through traditional RTL
can be imported into the System Generator environment to take advantage of this
verification.

• For IP generated from RTL, you must create an RTL test bench to verify the IP.

• IP provided by Xilinx and third-party providers is pre-verified, however you might wish
to create a test bench to confirm its operation based on your own set of configuration
parameters.

The use of standard AXI interfaces on the IP allows the IP to be quickly integrated, both with
each other and with the shell design.

System Development
Although the concept of using a shell and multiple IP blocks is not new to FGPA designers,
this methodology typically requires lots of RTL to be developed and simulated, requiring
stitching hundreds, if not thousands, of individual RTL signals together multiple times to
make the following connections:

• The shell to verification IP

• The shell to the core design IP

• The shell to derivative core design IP.

In lieu of the many additional man-hours in both design and verification effort it would take
to use this methodology in a traditional RTL design flow (this is an error prone task when
performed in a text editor), design teams typically design and integrate everything
together.

Vivado IP integrator enables this methodology and allows IPs to be quickly integrated
without the traditional hand-editing of RTL files.
UltraFast High-Level Productivity Design Methodology Guide 16
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=16

Chapter 2: System Design
The key features for using this methodology are:

• Vivado IP Catalog

• IP integrator and standard interfaces

Vivado IP Catalog
The Vivado IP Catalog is the backbone of any methodology that uses IP and IP re-use.
Figure 2-3 shows an alternative view of the design process for the High-Level Productivity
Design Methodology highlighting where and when the IP Catalog is used.

IMPORTANT: Use of the IP Catalog is key to enabling a High-Level Productivity Design Methodology.

The IP Catalog has the following features:

• Includes approximately 200 IPs from Xilinx. For more information, refer to the Xilinx
Intellectual Property Page [Ref 12].

• Saves the output from C based IP development.

• Can be enhanced with System Generator, legacy RTL, and Xilinx Partner IP.

• Contains a large number of interface IPs, supports the use of legacy RTL IP, and is used
extensively when creating the shell.

• Is the source for all IP blocks during system integration.

X-Ref Target - Figure 2-3

Figure 2-3: IP Catalog and the Design Process
UltraFast High-Level Productivity Design Methodology Guide 17
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=17

Chapter 2: System Design
• Provides the RTL implementations used during system integration and verification.

During shell development, the shell is assembled in IP integrator using IP from the IP
Catalog. This might include interface IP provided by Xilinx (Ethernet, VGA, CPRI, Serial
Transceivers, etc.), IP from Xilinx partners, legacy RTL package as IP for the IP Catalog, or IP
created by Vivado HLS and System Generator.

Details about packaging legacy RTL as IP are provided in the Vivado Design Suite Tutorial:
Creating and Packaging Custom IP (UG1119) [Ref 5].

Details on creating IP with AXI interfaces from System Generator are provided in the Vivado
Design Suite User Guide: Model-Based DSP Design Using System Generator (UG897) [Ref 6].

The default output from Vivado HLS is an IP packaged for the IP Catalog. This is described
in IP Packaging.

IP Integrator and Standard Interfaces
The Vivado IP integrator allows IP blocks to be quickly added to a canvas and connected,
and is a key enabler of a high productivity design methodology.

IMPORTANT: The key to high productivity using Vivado IP integrator is the use of standard interfaces.

Figure 2-4 shows an example block design captured in IP integrator.
UltraFast High-Level Productivity Design Methodology Guide 18
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=18

Chapter 2: System Design
The connection types include:

• Pin-level connections such as clock and reset signals.

• Bus-level connections such as AXI, AXI4-Lite and AXI4-Stream buses.

• Board-level connections such as DDR.

Connections in IP integrator are made by using the mouse to graphically connect the pins
on each IP together. In addition to supporting basic connecting bit-level connections,
support is provided for bus-level connection and designer assistance.

X-Ref Target - Figure 2-4

Figure 2-4: IP integrator block design
UltraFast High-Level Productivity Design Methodology Guide 19
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=19

Chapter 2: System Design
The following figure highlights the advantage of bus-level connections. In this example, two
AXI master interfaces are to be connected together. Note that as soon as the connection is
made to the first port, all possible valid connections are identified on the diagram by green
check marks.

IMPORTANT: IP integrator does not allow illegal connections to be made. This eliminates the types of
connectivity errors typically made when this process is performed through manual edits.

A further productivity feature provided by the use of standard AXI interfaces and IP
integrator is the automatic generation of the AXI interconnect IP. Figure 2-6 shows the
result when connecting:

• An AXI output on one block

• An AXI4-Stream input on another block

IP integrator automatically adds the AXI Interconnect IP to connect the master type
interface to a stream type interface.

X-Ref Target - Figure 2-5

Figure 2-5: Connection Automation
UltraFast High-Level Productivity Design Methodology Guide 20
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=20

Chapter 2: System Design
This AXI Interconnect IP is provided in the IP Catalog and can be added manually but IP
integrator automates the task. Furthermore, if the final block design is saved as a script, the
Tcl commands simply state which pins to connect.

TIP: When you upgrade to a new release of the Vivado Design Suite and Xilinx IP, re-run the script to
make sure that it uses the latest interconnect logic.

A final case for using standard interfaces in your designs is the designer assistance
provided for board level connections. In addition to allowing the target device to be
selected, the Vivado Design Suite allows selection of target boards. IP integrator is
board-aware and is able to automate board-level connections.

After confirmation from the designer, IP integrator automatically makes the connections
between the IP and FPGA pins (board connections).

X-Ref Target - Figure 2-6

Figure 2-6: Automated AXI Interconnect IP
UltraFast High-Level Productivity Design Methodology Guide 21
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=21

Chapter 2: System Design
IP integrator automates integration of IP into a block level diagram. Additional features
include Design Rule Checks using the Validate feature and the automatic addition of clock
and reset logic for AXI Interconnect IP. The key to taking advantage of this automation, and
enabling a productive shell methodology, is the use of standard interfaces and AXI
interfaces for on-chip communication.

X-Ref Target - Figure 2-7

Figure 2-7: Block Automation
UltraFast High-Level Productivity Design Methodology Guide 22
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=22

Chapter 3

Shell Development

Overview
The use of a shell is a critical part of the productivity benefits provided by a high
productivity design methodology. A shell design contains all of the standard interfaces and
processing blocks that provide the connection between the core design IP and the
remainder of the system, and is developed in parallel to the core design IP.

A methodology that incorporates shell design provides key productivity gains, such as:

• It allows the development of the design interfaces and I/O planning to proceed
independently of the core design.

• It enables the verification of the design interfaces to start before the core design IP is
ready.

• It reduces the verification time for the interfaces because the design is smaller; it does
not contain the core design IP that typically represents the majority of the logic in the
system.

• It promotes a highly productive design re-use methodology, allowing derivative
designs to be easily created.

An overview of the shell design methodology is shown in Figure 3-1. A key attribute of the
methodology is the re-use of the shell design.
UltraFast High-Level Productivity Design Methodology Guide 23
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=23

Chapter 3: Shell Development
Shell development consists of two equally important processes: shell design and shell
verification.

Shell Design
A shell design consists only of the design periphery, as shown in the figure above, and must
be in a form that makes the design easy to re-use. The shell will be saved and re-opened to
form the basis of multiple projects.

To achieve the level of design re-use required to enable the flow shown in the above figure,
the shell design should be captured as a block design in IP integrator that can be easily
saved and re-opened to form the basis of other design projects.

Assemble Existing IP
A shell design is assembled as block design in IP integrator using IP from the IP Catalog.

IMPORTANT: In preparation for creating your shell, package any existing RTL or company-specific IP
you want to use in the shell design as IP for use in the IP Catalog. This allows you to add the IP in the
shell block design.

For details about how to package blocks for the IP Catalog, refer to the Vivado® Design
Suite Tutorial: Creating and Packaging Custom IP (UG1119) [Ref 5].

X-Ref Target - Figure 3-1

Figure 3-1: Shell Methodology
UltraFast High-Level Productivity Design Methodology Guide 24
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=24

Chapter 3: Shell Development
Shell Design Project
After you assemble your IP, create a Vivado RTL project.

TRAINING: Creating a Vivado RTL project is detailed in the Vivado Design Suite QuickTake Video:
Creating Different Types of Projects.

When creating the Vivado project:

• Specify the project as an RTL project and select Do not specify any sources at this
time. The sources for the shell design are the IP you have packaged in the IP Catalog.

• Ideally, select the target as a Xilinx® board. The I/O for devices used on Xilinx boards
has already been configured. This allows you to get started in the quickest possible
time—while your own custom board is developed—and allows you to use Designer
Automation within IP integrator for I/O connections.

If you do not specify a Xilinx board as the target, you will also need to specify the I/O
connections for the target device. Refer to this link in the UltraFast Design Methodology
Guide for the Vivado Design Suite (UG949) [Ref 7].

If you are using your own custom board during the development process, you might want
to create a board file that details the board connections and allows designer automation
within IP integrator, greatly simplifying board level connections. Details on the board file
are provided in “Using the Vivado Design Suite Board Flow,” provided at this link in the
Vivado Design Suite User Guide: System-Level Design Entry (UG895) [Ref 9].

After the project has been created, use the Create Block Design button in the Flow
Navigator to open IP integrator and create a new Block Design. In the IP integrator window,
specify the source of your IP repository and use the Add IP button to start assembling the
shell.

Once the shell is complete, the write_bd_tcl command is used to save the entire block
design as a Tcl script. This script contains everything that is needed to re-generate the block
design from scratch. The block design and Vivado project are saved and ready for the next
stages of verification and system development.

In depth information on pin planning, IP integrator, and other features in the Vivado Design
Suite is provided in the Design Hubs tab of the Documentation Navigator. For more
information, refer to Using the Documentation Navigator.
UltraFast High-Level Productivity Design Methodology Guide 25
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/creating-different-types-of-projects.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/creating-different-types-of-projects.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug949-vivado-design-methodology.pdf;a=BoardAndDevicePlanning
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug895-vivado-system-level-design-entry.pdf;a=xUsingTheVivadoDesignSuiteBoardFlow
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=25

Chapter 3: Shell Development
Shell Verification
After the shell design is created, shell verification can proceed. In the verification process,
the shell design is re-opened and verification IP is added to the design to confirm that the
interfaces are working.

Shell Verification Projects
The first step in verifying the shell design is to create a new verification project using one
of the following two options.

• Open the Vivado project for the shell design and use File > Save Project As to save the
shell design in a new project.

• Create a new Vivado RTL project (with no RTL sources) and the same target device or
board. Then select Create Block Design, and in the console, source the Tcl script saved
using write_bd_tcl to regenerate the shell Block Design in the new project.

Multiple verification projects might be required to ensure that the complexity of the
verification design is manageable. The figure below shows an example shell verification
design. This example tests only a single interface.

X-Ref Target - Figure 3-2

Figure 3-2: Shell Verification Example
UltraFast High-Level Productivity Design Methodology Guide 26
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=26

Chapter 3: Shell Development
Verification IP
Verification IP is added to the shell design from the Vivado IP Catalog to verify the design.

The verification IP can be developed using any of the techniques discussed in this guide:
RTL, System Generator, or C-based IP. The following examples shows how if standard AXI
Interface IPs are used, a small C file can be used to quickly create, for example, a HANN
window of N samples output on an AXI4-Stream interface. An AXI memory mapped
interface can be implemented by simply changing the interface directive to m_axi from
axis, as shown in the following code example:

void verify_IP_Hann(float outdata[WIN_LEN]) {
// Specify AXI4-Stream output
#pragma HLS INTERFACE axis port=outdata
// Alternative output AXI4M (commented out)
//#pragma HLS INTERFACE m_axi port=outdata

 float coeff[WIN_LEN];
 coeff_loop:for (int i = 0; i < WIN_LEN; i++) {
 coeff[i] = 0.5 * (1.0 - cos(2.0 * M_PI * i / WIN_LEN));

 }

 winfn_loop:for (unsigned i = 0; i < WIN_LEN; i++) {
 outdata[i] = coeff[i];

 }
}

For information about how to use Vivado HLS to create interface blocks between other IPs,
refer to Methods for Integrating AXI4-based IP Using Vivado IP Integrator Application Note
(XAPP1204) [Ref 10].

Verifying the Shell
If a top-level test bench is added to the simulation sources, the shell design can be verified
by simulation prior to programming the FPGA.

Verification of the shell using RTL simulation requires the creation of the RTL test bench.
This same test bench is used to verify the fully integrated design. If multiple verification
projects are used to verify the shell, the same test bench should be expanded to verify all of
the interfaces.

To verify detailed interfaces on the FPGA, additional signal level debug probes can be
added to the design.

When working in the Block Design, the right-click menu allows nets to be easily marked for
debug. Signals marked for debug can be analyzed during hardware operation: ILA cores are
added to the design to allow the signals to be captured and scanned out of the FPGA for
analysis. Refer to this link in the Vivado Design Suite User Guide: Designing IP Subsystems
Using IP Integrator (UG994) [Ref 8].
UltraFast High-Level Productivity Design Methodology Guide 27
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug994-vivado-ip-subsystems.pdf;a=xUsingTheILAToDebugIPIntegratorDesigns
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=27

Chapter 3: Shell Development
The final design is then processed through the Vivado design flow to bitstream. When the
shell is fully verified, any modifications to the shell design, other than modifications to the
verification IP, should be propagated back to the original source shell design project. The
shell design is then ready for the integration of the core design IP.
UltraFast High-Level Productivity Design Methodology Guide 28
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=28

Chapter 4

C-Based IP Development

Overview
In a high productivity design flow, the primary means of generating the core design IP is
through the use of C-based IP and High-Level Synthesis (HLS) of C code into RTL. A C-based
IP development flow provides the following benefits:

• Superior simulation speeds provided by C verification

• Automated generation of accurately timed optimized RTL

• Ability to use existing C IP from libraries

• Ease of integrating the resulting RTL IP into a complete system using IP Integrator

This chapter discusses how C-Based IP is created, validated, synthesized, analyzed,
optimized, and packaged into IP for the IP Catalog. The means for achieving this is Vivado®
High-Level Synthesis (HLS), a tool provided as part of the Vivado Design Suite.

The design flow for Vivado HLS is shown in the figure below. The design flow steps are:

1. Compile, execute (simulate), and debug the C algorithm.

Note: In high-level synthesis, running the compiled C program is referred to as C simulation.
Executing the C program simulates the function to validate that the algorithm is functionally
correct.

2. Synthesize the C program into an RTL implementation, optionally using user
optimization directives.

3. Generate comprehensive reports and analyze the design.

4. Verify the RTL implementation using a push button flow.

5. Package the RTL implementation into a selection of IP formats.
UltraFast High-Level Productivity Design Methodology Guide 29
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=29

Chapter 4: C-Based IP Development
Details about using Vivado HLS are provided in the Vivado Design Suite User Guide:
High-Level Synthesis (UG902) [Ref 2]. This chapter explains a methodology for using Vivado
HLS in a highly productive manner.

Fast C Verification
Simulating an algorithm in C can be orders of magnitude faster than simulating the same
algorithm in RTL.

For example, consider a standard video algorithm. A typical video algorithm in C processes
a complete frame of video data and compares the output image against a reference image
to confirm that the results are correct. The C simulation for this typically takes 10-20
seconds. A simulation of the RTL implementation typically takes a few hours to day(s)
depending on the number of frames and the complexity of the design.

X-Ref Target - Figure 4-1

Figure 4-1: Vivado HLS Design Flow
UltraFast High-Level Productivity Design Methodology Guide 30
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=30

Chapter 4: C-Based IP Development
The more development performed at the C level, using the simulation speed of software,
the more productive you will be. It is at this level that designers actually design: adjusting
their algorithm, data types, and bit-width to validate and confirm that the design is correct.

The remainder of the flow is development: using a tool chain to implement the correct
design in an FPGA. The benefits provided by the Vivado Design Suite and a High-Level
Productivity Design methodology is the high degree of automation provided to the
development flow.

After the initial FPGA design is implemented, it is not uncommon to create an entire new
bitstream to program the FPGA, using the scripted flow presented in Chapter 5, System
Integration, in less time than it takes to perform a system-wide RTL simulation.

To maximize the productivity of a C-based IP flow, the following should be understood:

• C Test Bench

• Self-Checking Test Bench

• Bit Accurate Data Types

C Test Bench
The top level of every C program is the main() function. Vivado HLS synthesizes any single
function below the level of main(). The function to be synthesized by Vivado HLS is
referred to as the Design Function. This is highlighted in Figure 4-2.

• All functions below the Design Function are synthesized by Vivado HLS.

• Everything outside of the Design Function hierarchy is referred to as the C test bench.

The C test bench includes all of the C code below main() that supplies input data to the
Design Function and accepts output data from the Design Function to confirm that it is
accurate.
UltraFast High-Level Productivity Design Methodology Guide 31
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=31

Chapter 4: C-Based IP Development
The single biggest mistake made by users new to the Vivado HLS design flow is to proceed
to synthesize their C code without using a C test bench and performing C simulation. This
can be highlighted by the following code. What is wrong with this example of nested loops?

X-Ref Target - Figure 4-2

Figure 4-2: C Test Bench
UltraFast High-Level Productivity Design Methodology Guide 32
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=32

Chapter 4: C-Based IP Development
#include "Nested_Loops.h"

void Nested_Loops(din_t A[N], dout_t B[N]) {

int i,j;
dint_t acc;

LOOP_I:for(i=0; i < 20; i++){
LOOP_J: for(j=0; j < 20; j++){
if(j=0) acc = 0;
acc += A[i] * j;

if(j=19) B[i] = acc / 20;
}

}
}

This code fails to synthesize into the expected result because the conditional statements
evaluate as FALSE and J is set to 19 at the end of the first iteration of LOOP_J. The
conditional statements should be j==0 and j==19 (using == instead of =). The preceding
code example compiles, executes, and can be synthesized without any issue. However, it will
not do what is expected by a cursory visual evaluation of the code.

In an era where developers consistently use one or more of C/C++, Perl, Tcl, Python, Verilog,
and VHDL on a daily basis, it is hard to catch such trivial mistakes, more difficult still to
catch functional mistakes, and extremely difficult and time consuming to uncover either
after synthesis.

A C test bench is nothing more than a program that calls the C function to be synthesized,
provides it test data, and tests the correctness of its output; this can be complied and run
prior to synthesis and the expected results validated before synthesis.

You might initially feel that you are saving time by going directly to synthesis, but the
benefits of using a C test bench in your design methodology are worth a lot more than the
time it takes to create one.

Self-Checking Test Bench
The Vivado HLS supports C simulation prior to synthesis to validate the C algorithm and
C/RTL co-simulation after synthesis to verify the RTL implementation. In both cases, Vivado
HLS uses the return value of function main() to confirm that the results are correct. An
ideal C test bench has the result checking attributes shown in the code example below. The
outputs from the function for synthesis are saved into the file results.dat and compared
to the correct and expected results, which are referred to as the “golden” results in this
example.

int main () {
...
int retval=0;
fp=fopen("result.dat","w");
...
// Call the function for synthesis
loop_perfect(A,B);
UltraFast High-Level Productivity Design Methodology Guide 33
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=33

Chapter 4: C-Based IP Development
// Save the output results
for(i=0; i<N;++i) {
fprintf(fp, "%d \n", B[i]);

}...

// Compare the results file with the golden results
retval = system("diff --brief -w result.dat result.golden.dat");
if (retval != 0) {
printf("Test failed !!!\n");
retval=1;

else {
printf("Test passed !\n");

}

// Return 0 ONLY if the results are correct
 return retval;
}

In the Vivado HLS design flow, the return value to function main() indicates the
following:

• A value of Zero: Results are correct.

• A Non-zero value: Results are incorrect.

RECOMMENDED: Because the system environment (for example, Linux, Windows, or Tcl) interprets the
return value of the main() function, Xilinx® recommends that you constrain the return value to an
8-bit range for portability and safety.

By using a self-checking test bench, you are not required to create an RTL test bench to
verify that the output from Vivado HLS is correct. The same test bench used for the C
simulation is automatically used during C/RTL co-simulation and the post-synthesis results
verified by the test bench.

There are many ways in C to check that the results are valid. In the above example, the
output from the function for synthesis is saved to file result.dat.and compared to a file
with the expected results. The results could also be compared to an identical function not
marked for synthesis (which executes in software when the test bench runs) or compared to
values calculated by the test bench.

IMPORTANT: If there is no return statement in function main() of the test bench, the C standard
dictates that the return value is zero. Thus, C and C/RTL co-simulation always reports the simulation
as passing, even if the results are incorrect. Check the results and return zero only if they are correct.

The time spent to create a self-checking test bench ensures that there are no obvious errors
in the C code and no requirement to create RTL test benches to verify that the output from
synthesis is correct.
UltraFast High-Level Productivity Design Methodology Guide 34
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=34

Chapter 4: C-Based IP Development
Bit Accurate Data Types
Arbitrary precision data types are provided with Vivado HLS and allow variables to be
specified at any width. For example, variables might be defined as 12-bit, 22-bit, or 34-bits
wide. Using standard C data types, these variables are required to be 16-bit, 32-bit, and
64-bit, respectively. Using the standard C data types often results in unnecessary hardware
to implement the required accuracy; for example, 64-bit hardware when only 34-bit is
required.

An even greater benefit of using arbitrary precision data types is that the C algorithm can
be simulated using these new bit-widths and the bit-accurate results analyzed. For example,
you might wish to design a filter with 10-bit inputs and 14-bit output and you might
determine that the design can use a 24-bit accumulator. Performing C simulation—which
can simulate the filter with tens of thousands of samples in a matter of minutes—will
quickly confirm whether the signal-to-noise ratio of the output is acceptable. You will
quickly be able to determine if the accumulator is too small or verify that using a smaller,
more efficient accumulator still provides the required accuracy.

IMPORTANT: Simulation of a bit-accurate C is the fastest way to verify your design.

A productive methodology is to start your initial design with standard C data types and
confirm the algorithm performs as designed. Then migrate your C code to use arbitrary
precision data types. This migration to more hardware efficient data types can only be
performed safely and productively if there is a C test bench checking the results, allowing
you to quickly verify the smaller more efficient data types are adequate. Once you are
comfortable with arbitrary precision types, you will typically use arbitrary precision data
types right from the start of your new C project.

The benefits of using a C test bench, and the loss of productivity in not using one as part of
your design methodology, cannot be overstated.

The Vivado HLS examples described at this link in the Vivado Design Suite User Guide:
High-Level Synthesis (UG902) [Ref 2] are all provided with a C, C++, or SystemC test bench.
These examples can be copied and modified to create a C test bench. They include C
functions using arbitrary precision data types.

C Language Support for Synthesis
Understanding what is supported for synthesis is important part of the Vivado HLS
UltraFast design methodology. Vivado HLS provides comprehensive support for C, C++,
and SystemC. Everything is supported for C simulation; however, it is not possible to
synthesize every description into an equivalent RTL implementation.
UltraFast High-Level Productivity Design Methodology Guide 35
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf;a=xDesignExamplesAndReferences
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=35

Chapter 4: C-Based IP Development
The two key principles to keep in mind when reviewing the code for implementation in an
FPGA are:

• An FPGA is a fixed size resource. The functionality must be fixed at compile time.
Objects in hardware cannot be dynamically created and destroyed.

• All communication with the FPGA must be performed through the input and output
ports. There is no underlying Operating System (OS) or OS resources in an FPGA.

Unsupported Constructs

System Calls

System calls are not supported for synthesis. These calls are used to interact with the OS
upon which the C program executes. In an FPGA there is no underlying OS to communicate
with. Example of systemcalls are time() and printf().

Some commonly used functions are automatically ignored by Vivado HLS and there is no
requirement to remove them from the code. These functions are:

• abort()

• atexit()

• exit()

• fprintf()

• printf()

• perror()

• putchar()

• puts()

An alternative to removing any unsupported code is to guard it from synthesis. The
__SYNTHESIS__ macro is automatically defined by Vivado HLS when synthesis is
performed.

This macro can be used to include code when C simulation is run, but exclude the code
when synthesis is performed.
UltraFast High-Level Productivity Design Methodology Guide 36
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=36

Chapter 4: C-Based IP Development
#ifndef __SYNTHESIS__
// The following code is ignored for synthesis
FILE *fp1;
char filename[255];
sprintf(filename,Out_apb_%03d.dat,apb);
fp1=fopen(filename,w);
fprintf(fp1, %d \n, apb);
fclose(fp1);

#endif

Note: Only use the __SYNTHESIS__ macro in the code to be synthesized. Do not use this macro in
the test bench, because it is not obeyed by C simulation or C RTL co-simulation.

If information is required from the OS, the data must be passed into the top-level function
for synthesis as an argument. It is then the task of the remaining system to provide this
information to the synthesized IP block. This can typically be done by implementing the
data port as an AXI4-Lite interface connected to a CPU.

Dynamic Objects

Dynamic objects cannot be synthesized. The function calls malloc(), alloc(),
pre-processor free(), and C++ new and delete dynamically create or destroy memory
resources that exist in the OS memory map. The only memory resources available in an
FPGA are block RAMs and registers. Block RAMs are created when arrays are synthesized
and the values in the arrays must be maintained over one or more clock cycles. Registers are
created when the value stored by a variable must be maintained over one or more clock
cycles. Arrays of a fixed size or variables must be used in place of any dynamic memory
allocation.

As with restrictions on dynamic memory usage, Vivado HLS does not support (for synthesis)
C++ objects that are dynamically created or destroyed. This includes dynamic
polymorphism and dynamic virtual function calls. New functions, which would result in new
hardware, cannot be dynamically created at run time.

For similar reasons, recursion is not supported for synthesis. All objects must be of a known
size at compile time. Limited support for recursion is provided when using templates.

Except for standard data types, such as std::complex, C++ Standard Template Libraries
(STLs) are not supported for synthesis. These libraries contain functions which make
extensive use of dynamic memory allocation and recursion.

SystemC Constructs

An SC_MODULE cannot be nested inside, or derived from, another SC_MODULE.

The SC_THREAD construct is not supported (however, SC_CTHREAD is).
UltraFast High-Level Productivity Design Methodology Guide 37
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=37

Chapter 4: C-Based IP Development
Constructs with Limited Support

Top-Level Function

Templates are supported for synthesis but are not supported for use on the top-level
function.

A C++ class object cannot be the top-level for synthesis. The class must be instantiated into
a top-level function.

Pointers to pointers are supported for synthesis but not when used as an argument to the
top-level function.

Pointer Support

Vivado HLS supports pointer casting between native C types but does not support general
pointer casting, such as casting between pointers to differing structure types.

Vivado HLS supports pointer arrays, provided that each pointer points to a scalar or an
array of scalars. Arrays of pointers cannot point to additional pointers.

Recursion

Recursion in an FPGA is only supported through the use of templates. The key to
performing recursion in synthesis is the use of a termination class, with a size of one, to
implement the final call in the recursion.

Memory Functions

The memcpy() and memset() are both supported with the limitation that const values
must be used.

• memcpy(): used for bus burst operation or array initialization with const values. The
memcpy function can only be used to copy values to or from arguments to the
top-level function.

• memset(): used for aggregate initialization with constant set value.

Any code which is not supported for synthesis, or for which only limited support is
provided, must be modified before it can be synthesized.

More complete details on language support and are provided at this link in the Vivado
Design Suite User Guide: High-Level Synthesis (UG902) [Ref 2].
UltraFast High-Level Productivity Design Methodology Guide 38
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf;a=xHighLevelSynthesisCodingStyles
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=38

Chapter 4: C-Based IP Development
Using Hardware Optimized C Libraries
Vivado HLS provides a number of C libraries for commonly used C functions. The functions
provided in the C libraries are generally pre-optimized to ensure high-performance and
result in an efficient implementation for when synthesized.

“High-Level Synthesis C Libraries,” available at this link in the Vivado Design Suite User
Guide: High-Level Synthesis (UG902) [Ref 2], provides extensive details on all the C libraries
provided with Vivado HLS, however, it is highly recommended to have an appreciation of
what C functions are available in the C libraries as part of your methodology.

Vivado HLS includes the following C libraries:

• Arbitrary Precision Data Types

• HLS Stream Library

• Math Functions

• Linear Algebra Functions

• Digital signal processing (DSP) Functions

• Video Functions

• IP Library

Understanding Vivado HLS
In it crucial to understand some key HLS concepts before reviewing the subsequent sections
in this guide which address optimizing C-based IP. This section provides a brief overview of
those concepts.

Measuring Performance
Vivado HLS quickly creates the most optimum implementation based on its own default
synthesis behavior and constraints. The clock period is the primary constraint and Vivado
HLS uses this along with the target device specifications to determine how many operations
can be performed within a clock cycle.

After satisfying the clock frequency constraint, the performance metrics used by Vivado
HLS, and in order of optimization importance, are:

• Initiation Interval (II): This is the number of clock cycles between new inputs. This
represents the throughput and how quickly the design reads the next input and
processes it.
UltraFast High-Level Productivity Design Methodology Guide 39
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf;a=xHighLevelSynthesisCLibraries
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=39

Chapter 4: C-Based IP Development
• Latency: This is the number of clock cycles required to generate the output. After the
minimum interval has been achieved, or if no internal target has been specified, Vivado
HLS seeks to minimize the latency.

• Area: After the minimum latency has been achieved, Vivado HLS seeks to minimize the
area.

The performance metrics are reported for the entire function. For example, if the function
has a scalar input, II=3 means the function is processing 1 sample every 3 clock cycles.
However, if the function has an input array of N elements, II=N means N elements are
processed every N clocks: a rate of one sample per clock.

Optimization directives can be used to direct Vivado HLS to create a design which
prioritizes the above metrics: for example, force a reduction in area or latency over the
throughput. In the absence of any optimization directives, Vivado HLS uses these goals and
the default synthesis behavior outlined below to create the initial design.

Interface Synthesis
The arguments to the top-level function are synthesized into data ports with an optional IO
protocol. An IO protocol is one or more signals associated with the data port to
automatically synchronize data communication between the data port and other hardware
blocks in the system.

For example, in an handshake protocol, the data port is accompanied by a valid port to
indicate when the data is valid for reading or writing and an acknowledge port to indicate
the data has successfully been read or written.

A full description of the IO protocols is provided at this link in the Vivado Design Suite User
Guide: High-Level Synthesis (UG902) [Ref 2], but these interfaces include AXI, AXI4-Stream
and AXI4-Lite interfaces, allowing the IP to be easily integrated into the system using IP
integrator.

In addition, an IO protocol is implemented by default for the top-level function itself. This
protocol controls when the IP can start operation and indicates when the IP has completed
its operation or is ready for new input data. This optional IO protocol can be implemented
as an AXI4-Lite interface, allowing the design to be controlled from a microprocessor.

Function Synthesis
Functions are synthesized into hierarchical blocks in the final RTL design. Each function in
the C code will be represented in the final RTL by a unique block. In general, optimizations
stop at function boundaries; some optimization directives have a recursive option or
behavior which allows the directive to take effect across function boundaries.
UltraFast High-Level Productivity Design Methodology Guide 40
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf;a=xManagingInterfaces
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=40

Chapter 4: C-Based IP Development
Functions can be inlined using an optimization directive. This permanently removes the
function hierarchy and can lead to better optimization of the logic. Functions can also be
pipelined to improve their throughput performance.

Functions are scheduled to execute as early as possible. The following examples shows two
functions, foo_1 and foo_2.

void foo_1 (a,b,c,d,*x,*y) {
 ...
 func_A(a,b,&x);
 func_B(c,d,&y);
}

In function foo_1, there is no data dependency between functions func_A and func_B.
Even though they appear serially in the C code, Vivado HLS implements an architecture
where both functions start to process data at the same time in the first clock cycle.

void foo_2 (a,b,c,*x,*y) {
int *inter1;

 ...
 func_A(a,b,&inter1,&x);
 func_B(c,d,&inter1,&y)
}

In function foo_2, there is a data dependency between the functions. Internal variable
inter1 is passed from func_A to func_B. In this case, Vivado HLS must schedule function
func_B to start only after function func_A is finished.

Loop Synthesis
Loops by default are left “rolled.” This means that Vivado HLS synthesizes the logic in the
loop body once and then executes this logic serially until the loop termination limit is
reached. Loops can be “unrolled” allowing all the operations to occur in parallel but creating
multiple copies of the loop hardware, or they can be pipelined to improve performance.
UltraFast High-Level Productivity Design Methodology Guide 41
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=41

Chapter 4: C-Based IP Development
Loops are always scheduled to execute in order. In the following example, there is no
dependency between loop SUM_X and SUM_Y, however, they will always be scheduled in the
order they appear in the code.

#include "loop_sequential.h"

void loop_sequential(din_t A[N], din_t B[N], dout_t X[N], dout_t Y[N],
dsel_t xlimit, dsel_t ylimit) {

dout_t X_accum=0;
dout_t Y_accum=0;
int i,j;

SUM_X:for (i=0;i<xlimit; i++) {
X_accum += A[i];
X[i] = X_accum;

}

SUM_Y:for (i=0;i<ylimit; i++) {
Y_accum += B[i];
Y[i] = Y_accum;

}
}

Example 4-1: Sequential Loops

Logic Synthesis
By default, the logic within functions and loops is always synthesized to execute as early as
possible. Vivado HLS always seeks to minimize the latency and while achieving design
constraints. Operators in the C code, such as +, *, and /, are synthesized into hardware
cores. Vivado HLS automatically selects the most appropriate core to achieve the synthesis
goals. The optimization directive RESOURCE can be used to explicitly specify which
hardware core is used to implement the operation.

Array Synthesis
By default, Vivado HLS synthesizes arrays into block RAM.

In an FPGA, block RAM is provided in blocks of 18K-bit primitive elements. Each block RAM
uses as many 18K primitive elements as required to implement the array. For example, an
array of 1024 int types requires 1024 * 32-bit = 32768 bits of block RAM, which requires
32768/18000 = 1.8 18K block RAM primitives to implement the block RAM. Although
Vivado HLS reports that each array is synthesized into one block RAM, the block RAM might
contain multiple 18K primitive block RAM elements.

By default, Vivado HLS makes no attempt to group smaller block RAMs into a single large
block RAM or partition large block RAMs into smaller block RAMs. However, this is possible
using optimization directives. Vivado HLS might automatically partition small arrays into
individual registers to improve the quality of results.
UltraFast High-Level Productivity Design Methodology Guide 42
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=42

Chapter 4: C-Based IP Development
Vivado HLS automatically determines whether to use a single or dual-port block RAM based
on the synthesis goals. For example, Vivado HLS uses a dual-port block RAM if this helps to
minimize the interval or latency. To explicitly specify whether to use a single or dual-port
block RAM, you can use the RESOURCE optimization directive.

Pipelining Functions, Loops, and Tasks
The key to achieving a high performance design is to use the PIPELINE and DATAFLOW
optimization directives to pipeline functions, loops and tasks.

The following figure shows a conceptual explanation of pipelining. Without pipelining, the
operations execute sequentially until the function completes. Then the next execution of
the function, or the next transaction, is performed. With pipelining, the next transaction
starts as soon as the hardware resource becomes available.

The PIPELINE directive can be used on functions or loops to improve the throughput
(minimize the II) with minimal area overhead.

Functions and loops are considered tasks. The DATAFLOW directive can be used to
“pipeline” tasks, allowing them to execute concurrently if data dependencies allow.

Figure 4-4 shows a conceptual view of task pipelining. After synthesis, the default behavior
is to execute and complete func_A, then func_B, and finally func_C. However, you can
use the DATAFLOW optimization directive to schedule each function to execute as soon as
data is available.

X-Ref Target - Figure 4-3

Figure 4-3: Pipelining Behavior

void func(…) {

 op_Read;
 op_Compute;
 op_Write;

}

RD
CMP
WR

3 cycles

RD CMP WR RD CMP WR

1 cycle

RD CMP WR

2 cycles
RD CMP WR

2 cycles

(A) Without Function Pipelining (B) With Function Pipelining
UltraFast High-Level Productivity Design Methodology Guide 43
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=43

Chapter 4: C-Based IP Development
In this example, the original function has a latency and interval of 8 clock cycles. When you
use dataflow optimization, the interval is reduced to only 3 clock cycles. The tasks shown in
this example are functions, but you can perform dataflow optimization between functions,
between functions and loops, and between loops.

Vivado HLS Resources
The Vivado HLS Design Hub in the Documentation Navigator provides easy access to learn
more about Vivado HLS:

• QuickTake videos explaining the operation

• Tutorials on every aspect of the design flow

• Vivado HLS User Guide

• Multiple Application Notes

For more information about design hubs, refer to Using the Documentation Navigator.

X-Ref Target - Figure 4-4

Figure 4-4: Dataflow Optimization

void top (a,b,c,d) {
 ...
 func_A(a,b,i1);
 func_B(c,i1,i2);
 func_C(i2,d)

 return d;
}
UltraFast High-Level Productivity Design Methodology Guide 44
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=44

Chapter 4: C-Based IP Development
Optimization Methodology
In addition to the default synthesis behavior discussed in the previous section, Vivado HLS
provides a number of optimization directives and configurations that are used to direct
synthesis towards a desired outcome. This section outlines a general methodology for
optimizing your design for high-performance.

There are many possible goals when trying to optimize a design using Vivado HLS. The
methodology assumes you want to create a design with the highest possible performance,
processing one sample of new input data every clock cycle, and so addresses those
optimizations before those used for reducing latency or resource.

 The next section, The HLS Optimization Methodology, addresses how to apply the
methodology described here for different C code architectures.

Detailed explanations of the optimizations discussed here are provided in the following
sections of the Vivado Design Suite User Guide: High-Level Synthesis (UG902) [Ref 2]:

• “Managing Interfaces,” available at this link.

• “Design Optimization,” available at this link.

It is highly recommended to review the methodology and obtain a global perspective of
high-level synthesis optimization before reviewing the details of specific optimization.

The HLS Optimization Methodology
The optimization methodology for Vivado HLS is shown in Figure 4-5. It cannot be
overstated how important it is to first verify your C code is functionally correct. The
remaining steps are explained below and can be summarized as: determine your interfaces,
pipeline the design, address issues which prevent optimal pipelining by optimizing data
structures and then address any latency and area concerns.
UltraFast High-Level Productivity Design Methodology Guide 45
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf;a=xManagingInterfaces
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf;a=xDesignOptimization
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=45

Chapter 4: C-Based IP Development
The following is a complete list of optimization directives. This list shows the Tcl commands
on the left side and the equivalent pragma directives, which can be placed directly in the C
code, on the right:

 set_directive_allocation - Directive ALLOCATION
 set_directive_array_map - Directive ARRAY_MAP
 set_directive_array_partition - Directive ARRAY_PARTITION
 set_directive_array_reshape - Directive ARRAY_RESHAPE
 set_directive_data_pack - Directive DATA_PACK
 set_directive_dataflow - Directive DATAFLOW
 set_directive_dependence - Directive DEPENDENCE
 set_directive_expression_balance - Directive EXPRESSION_BALANCE
 set_directive_function_instantiate - Directive FUNCTION_INSTANTIATE
 set_directive_inline - Directive INLINE
 set_directive_interface - Directive INTERFACE
 set_directive_latency - Directive LATENCY
 set_directive_loop_flatten - Directive LOOP_FLATTEN
 set_directive_loop_merge - Directive LOOP_MERGE
 set_directive_loop_tripcount - Directive LOOP_TRIPCOUNT
 set_directive_occurrence - Directive OCCURRENCE
 set_directive_pipeline - Directive PIPELINE
 set_directive_protocol - Directive PROTOCOL
 set_directive_reset - Directive RESET
 set_directive_resource - Directive RESOURCE
 set_directive_stream - Directive STREAM
 set_directive_top - Directive TOP
 set_directive_unroll - Directive UNROLL

X-Ref Target - Figure 4-5

Figure 4-5: HLS Optimization Methodology
UltraFast High-Level Productivity Design Methodology Guide 46
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=46

Chapter 4: C-Based IP Development
Configurations modify the default synthesis behavior. There are no pragma equivalents for
the configurations. In the GUI, configurations are set using the menu Solution > Solution
Settings > General. A complete list of the available configurations is:

 config_array_partition - Config the array partition
 config_bind - Config the options for binding
 config_compile - Config the optimization
 config_dataflow - Config the dataflow pipeline
 config_interface - Config command for io mode
 config_rtl - Config the options for RTL generation
 config_schedule - Config scheduler options

Having a list of all the optimization directives and synthesis configurations is good. Having
a methodology to use them is better.

Step 1: Initial Optimizations
The following table shows the first directives you should think about adding to your design.

The design interface is typically defined by the other blocks in the system. Since the type of
IO protocol helps determine what can be achieved by synthesis it is recommended to use
the INTERFACE directive to specify this before proceeding to optimize the design.

If the algorithm accesses data in a streaming manner, you might want to consider using one
of the streaming protocols to ensure high performance operation.

TIP: If the I/O protocol is completely fixed by the external blocks and will never change, consider
inserting the INTERFACE directives directly into the C code as pragmas.

When structs are used in the top-level argument list they are decomposed into separate
elements and each element of the struct is implemented as a separate port. In some case it
is useful to use the DATA_PACK optimization to implement the entire struct as a single data
word, resulting in a single RTL port. Care should be taken if the struct contains large arrays.
Each element of the array is implemented in the data word and this might result in a very
wide data ports.

Table 4-1: Optimization Strategy Step 1: Initial Optimizations

 Directives and Configurations Description

INTERFACE Specifies how RTL ports are created from the function
description.

DATA_PACK Packs the data fields of a struct into a single scalar with a
wider word width.

LOOP_TRIPCOUNT Used for loops which have variable bounds. Provides an
estimate for the loop iteration count. This has no impact on
synthesis, only on reporting.

Config Interface This configuration controls IO ports not associated with the
top-level function arguments and allows unused ports to
be eliminated from the final RTL.
UltraFast High-Level Productivity Design Methodology Guide 47
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=47

Chapter 4: C-Based IP Development
A common issue when designs are first synthesized is report files showing the latency and
interval as a question mark “?” rather than as numerical values. If the design has loops with
variable loop bounds Vivado HLS cannot determine the latency and uses the “?” to indicate
this condition.

To resolve this condition use the analysis perspective or the synthesis report to locate the
lowest level loop for which synthesis fails to report a numerical value and use the
LOOP_TRIPCOUNT directive to apply an estimated tripcount. This allows values for latency
and interval to be reported and allows solutions with different optimizations to be
compared.

Note: Loops with variable bounds cannot be unrolled completely and prevents function and loops
above them in the hierarchy from being pipelined. This is discussed in the next section.

Finally, global variables are generally written to and read from, within the scope of the
function for synthesis and are not required to be IO ports in the final RTL design. If a global
variable is used to bring information into or out of the C function you might wish to expose
them as an IO port using the interface configuration.

Step 2: Pipeline for Performance
The next stage in creating a high performance design is to pipeline the functions, loops, and
tasks. The following table shows the directives you can use for pipelining.

At this stage of the optimization process you want to create as much concurrent operation
as possible. You can apply the PIPELINE directive to functions and loops. You can use the
DATAFLOW directive at the level that contains the functions and loops to make them work
in parallel.

Table 4-2: Optimization Strategy Step 2: Pipeline for Performance

 Directives and Configurations Description

PIPELINE Reduces the initiation interval by allowing the concurrent
execution of operations within a loop or function.

DATAFLOW Enables task level pipelining, allowing functions and loops
to execute concurrently. Used to minimize interval.

RESOURCE Specifies a resource (core) to use to implement a variable
(array, arithmetic operation, or function argument) in the
RTL.

Config Compile Allows loops to be automatically pipelined based on their
iteration count.
UltraFast High-Level Productivity Design Methodology Guide 48
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=48

Chapter 4: C-Based IP Development
A recommended strategy is to work from the bottom up and be aware of the following:

• Some functions and loops contain sub-functions. If the sub-function is not pipelined,
the function above it might show limited improvement when it is pipelined. The
non-pipelined sub-function will be the limiting factor.

• Some functions and loops contain sub-loops. When you use the PIPELINE directive, the
directive automatically unrolls all loops in the hierarchy below. This can create a great
deal of logic. It might make more sense to pipeline the loops in the hierarchy below.

• Loops with variable bounds cannot be unrolled, and any loops and functions in the
hierarchy above these loops cannot be pipelined. To address this issue, pipeline these
loops, and use DATAFLOW optimization to maximize the performance of the function
that contains the loop. Alternatively, rewrite the loop to remove the variable bound.

The basic strategy at this point in the optimization process is to pipeline the tasks (functions
and loops) and as much as possible. For detailed information on which functions and loops
to pipeline and where to apply the DATAFLOW directive, refer to Optimization Strategies.

For designs with many loops or many nested loops, the compile configuration provides a
way to automatically pipeline all the loops in the design based on their loop iteration count.
For more information, refer to this link in the Vivado Design Suite User Guide: High-Level
Synthesis (UG902) [Ref 2].

Although not commonly used, you can also apply pipelining at the operator level. For
example, wire routing in the FPGA can introduce large and unanticipated delays that make
it difficult for the design to be implemented at the required clock frequency. In this case,
you can use the RESOURCE directive to pipeline specific operations, such as multipliers,
adders and block-RAM.

The RESOURCE directive specifies which hardware cores to use to implement the operations
in the C code. Specifying that a resource is implemented with a latency greater than 1
causes Vivado HLS to use additional pipeline stages for the operation. RTL synthesis can use
these additional pipeline stages to improve the overall timing.

The following operations support pipelined implementations:

• Standard arithmetic operations for which there is a multi-stage (*nS) core available

• Floating-point operations

• Arrays implemented with a block RAM
UltraFast High-Level Productivity Design Methodology Guide 49
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf;a=xAutomaticLoopPipelining
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=49

Chapter 4: C-Based IP Development
Step 3: Optimize Structures for Performance
C code can contain descriptions that prevent a function or loop from being pipelined with
the required performance. In some cases, this might require a code modification but in
most cases these issues can be addressed using other optimization directives.

The following example shows a case where an optimization directive is used to improve the
performance of pipelining. In this initial example, the PIPELINE directive is added to a loop
to improve the performance of the loop.

#include "bottleneck.h"

dout_t bottleneck(din_t mem[N]) {

dout_t sum=0;
int i;

SUM_LOOP: for(i=3;i<N;i=i+4)
#pragma HLS PIPELINE
sum += mem[i] + mem[i-1] + mem[i-2] + mem[i-3];

return sum;
}

When the code above is synthesized the following message is output:

INFO: [SCHED 61] Pipelining loop 'SUM_LOOP'.
WARNING: [SCHED 69] Unable to schedule 'load' operation ('mem_load_2',
bottleneck.c:62) on array 'mem' due to limited memory ports.
INFO: [SCHED 61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.
I

When pipelining fails to meet the required performance, the key to addressing the issue is
to examine the design in the analysis perspective. Details on using the Analysis Perspective
are provided at this link in the Vivado Design Suite User Guide: High-Level Synthesis (UG902)
[Ref 2]. The view of this design example in the analysis perspective is shown in the figure
below.

• The memory (block-RAM) accesses are highlighted in the figure. These correspond to
the array mem in the code above.

• Each access takes two cycles: one to generate the address and one to read the data.

• Only two memory reads can start in cycle C1 because a block RAM only has a maximum
of two data ports.

• The third and forth memory reads can only start in cycle C2.

• The earliest the next set of memory reads can occur is starting in cycle C3. This means
the loop can only have an II=2: the next set of inputs to the loop can only be read every
two cycles.
UltraFast High-Level Productivity Design Methodology Guide 50
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf;a=xAnalysisPerspective
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=50

Chapter 4: C-Based IP Development
The memory port limitation issue can be solved by using the ARRAY_PARTITION directive on
the mem array. This directive partitions arrays into smaller arrays providing more data ports
and improves the data structures to allow a higher performance pipeline.

With the additional directive shown below, array mem is partitioned into two dual port
memories so that all four reads can occur in one clock cycle. There are multiple options to
partition an array. In this case cyclic partitioning with a factor of 2 ensures the first partition
contains elements 0,2,4 etc. from the original array and the second partition contains
elements 1,3,5, etc. With a dual-port block-RAM this allows elements 0,1,2 and 3 to be read
in a single clock cycle.

#include "bottleneck.h"

dout_t bottleneck(din_t mem[N]) {
#pragma HLS ARRAY_PARTITION variable=mem cyclic factor=2 dim=1

dout_t sum=0;
int i;

SUM_LOOP: for(i=3;i<N;i=i+4)
#pragma HLS PIPELINE
sum += mem[i] + mem[i-1] + mem[i-2] + mem[i-3];

return sum;
}

Other such issues might be encountered when trying to pipeline loops and functions. The
following table lists the directives which are likely to address these issues by helping to
reduce bottlenecks in data structures.

X-Ref Target - Figure 4-6

Figure 4-6: Pipelining Fails Due to Too Few Ports
UltraFast High-Level Productivity Design Methodology Guide 51
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=51

Chapter 4: C-Based IP Development

In addition to the ARRAY_PARTITION directive, the configuration for array partitioning can
be used to automatically partition arrays.

The configuration for compile is used to automatically pipeline loop hierarchies. The
DEPENDENCE directive might be required to remove implied dependencies when pipelining
loops. Such dependencies will be reported by message SCHED-68.

@W [SCHED-68] Target II not met due to carried dependence(s)

The INLINE directive removes function boundaries. This can be used to bring logic or loops
up one level of hierarchy. It might be more efficient to pipeline the logic in a function by
including the logic in the function above it and it can be easier to dataflow a series of loops
with other loops by raising them up the hierarchy.

The UNROLL directive might be required for cases where a loop cannot be pipelined with
the required initiation interval. If a loop can only be pipelined with II=4 it will constrain the
other loops and functions in the system to be limited to II=4. In some cases, it might be
worth unrolling the loop - creating more logic, but removing a potential bottleneck.

The schedule configuration is used to increase the verbosity of the scheduling messages
and to control the effort levels in scheduling. When the verbose option is used Vivado HLS
lists the critical path when scheduling is unable to meet the constraints.

Table 4-3: Optimization Strategy Step 3: Optimize Structures for Performance

 Directives and
Configurations Description

ARRAY_PARTITION Partitions large arrays into multiple smaller arrays or into individual
registers, to improve access to data and remove block RAM bottlenecks.

DEPENDENCE Used to provide additional information that can overcome loop-carry
dependencies and allow loops to be pipelined (or pipelined with lower
intervals).

INLINE Inlines a function, removing all function hierarchy. Used to enable logic
optimization across function boundaries and improve latency/interval by
reducing function call overhead.

UNROLL Unroll for-loops to create multiple independent operations rather than a
single collection of operations.

Config Array Partition This configuration determines how arrays are partitioned, including global
arrays and if the partitioning impacts array ports.

Config Compile Controls synthesis specific optimizations such as the automatic loop
pipelining and floating point math optimizations.

Config Schedule Determines the effort level to use during the synthesis scheduling phase,
the verbosity of the output messages, and specify if II should be relaxed in
pipelined tasks in order to achieve timing.

CONFIG_UNROLL Allows all loops below the specified number of loop iterations to be
automatically unrolled.
UltraFast High-Level Productivity Design Methodology Guide 52
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=52

Chapter 4: C-Based IP Development
In general, there are few cases where increasing the schedule effort improves the
scheduling but the option is provided. If optimization directives and configurations cannot
be used to improve the initiation interval it might require changes to the code. Examples of
this are discussed at this link in the Vivado Design Suite User Guide: High-Level Synthesis
(UG902) [Ref 2].

Step 4: Reduce Latency
When Vivado HLS finishes minimizing the initiation interval it automatically seeks to
minimize the latency. The optimization directives listed in the following table can help
reduce or specify a particular latency.

These are generally not required when the loops and function are pipelined as in most
applications the latency is not critical: throughput typically is. If the loops and functions are
not pipelined, the throughput will be limited by the latency, because the task will not start
reading the next set of inputs until the prior task has completed.

The LATENCY directive is used to specify the required latency. The loop optimization
directives can be used to flatten a loop hierarchy or merge serial loops together. The benefit
to the latency is due to the fact that it typically costs a clock cycle to enter and leave a loop.
The fewer the number of transitions between loops, the less number of clock cycles a design
will take to complete.

Step 5: Reducing Area
After meeting the required performance target (or II), the next step is to reduce the area
while maintaining the same performance.

If you used the DATAFLOW optimization and Vivado HLS cannot determine whether the
tasks in the design are streaming data, Vivado HLS implements the memory channels
between dataflow tasks using ping-pong buffers. If the design is pipelined and the data is
streaming from one task to the next, you can greatly reduce the area by using the dataflow
configuration config_dataflow to convert the ping-pong buffers used in the default
memory channels into FIFO buffers. You can then set the FIFO depth to the minimum
required size.

Table 4-4: Optimization Strategy Step 4

 Directive Description

LATENCY Allows a minimum and maximum latency constraint to be
specified.

LOOP_FLATTEN Allows nested loops to be collapsed into a single loop with
improved latency.

LOOP_MERGE Merge consecutive loops to reduce overall latency, increase
sharing and improve logic optimization.
UltraFast High-Level Productivity Design Methodology Guide 53
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf;a=xHighLevelSynthesisCodingStyles
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=53

Chapter 4: C-Based IP Development
The dataflow configuration config_dataflow specifies the default implementation for
all memory channels. You can use the STREAM directive to specify which individual arrays to
implement as block RAM and which to implement as FIFOs.

If the design is implemented using an hls::stream I/O Protocol, the memory channels
default to FIFOs with a depth of 1, and the dataflow configuration is not required, however,
the STREAM directive can be used to increase the size of the FIFOs for cases where a task
outputs more data than it consumed, such as interpolation.

The following table lists the other directives to consider when attempting to minimize the
resources used to implement the design.

The ALLOCATION and RESOURCE directives are used to limit the number of operations and
to select which cores (or resources) are used to implement the operations. For example, you
could limit the function or loop to using only 1 multiplier and specify it to be implemented
using a pipelined multiplier. The binding configuration is used to globally limit the use of a
particular operation.

IMPORTANT: Optimization directives are only applied within the scope in which they are specified.

Table 4-5: Optimization Strategy Step 5

 Directive Description

ALLOCATION Specify a limit for the number of operations, cores or
functions used. This can force the sharing of hardware
resources and might increase latency

ARRAY_MAP Combines multiple smaller arrays into a single large array
to help reduce block RAM resources.

ARRAY_RESHAPE Reshape an array from one with many elements to one
with greater word-width. Useful for improving block RAM
accesses without using more block RAM.

LOOP_MERGE Merge consecutive loops to reduce overall latency,
increase sharing and improve logic optimization.

OCCURRENCE Used when pipelining functions or loops, to specify that
the code in a location is executed at a lesser rate than the
code in the enclosing function or loop.

RESOURCE Specify that a specific library resource (core) is used to
implement a variable (array, arithmetic operation or
function argument) in the RTL.

STREAM Specifies that a specific memory channel is to be
implemented as a FIFO or RAM during dataflow
optimization.

Config Bind Determines the effort level to use during the synthesis
binding phase and can be used to globally minimize the
number of operations used.

Config Dataflow This configuration specifies the default memory channel
and FIFO depth in dataflow optimization.
UltraFast High-Level Productivity Design Methodology Guide 54
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=54

Chapter 4: C-Based IP Development
If the ARRAY_PARITION directive is used to improve the initiation interval you might want to
consider using the ARRAY_RESHAPE directive instead. The ARRAY_RESHAPE optimization
performs a similar task to array partitioning however the reshape optimization re-combines
the elements created by partitioning into a single block RAM with wider data ports.

If the C code contains a series of loops with similar indexing, merging the loops with the
LOOP_MERGE directive might allow some optimizations to occur.

Finally, in cases where a section of code in a pipeline region is only required to operate at
an initiation interval lower than the rest of the region, the OCCURENCE directive is used to
indicate this logic can be optimized to execute at a lower rate.

Optimization Strategies
The Optimization Methodology is generally applicable to all types of C code. The key
optimization directives for obtaining a high-performance design are the PIPELINE and
DATAFLOW directives. This section discusses in detail how to apply these directives for
various architectures of C code.

Fundamentally, there are two types of C functions. Those which are frame based and those
which are sampled based.

No matter which style is used, almost identical RTL IP can be produced in both cases: the
difference is in how the optimization directives are applied. The selection of which style to
use is down to you: use whatever style is the easiest for you to capture your description.

Frame Based C Code
An example outline of Frame based C code is shown below. The primary characteristic of
this coding style is that the function processes multiple data samples - a frame of data -
during each transaction (a transaction is considered one complete execution of the C
function).

void foo(
data_t in1[HEIGHT][WIDTH],
data_t in2[HEIGHT][WIDTH],
data_t out[HEIGHT][WIDTH] {

Loop1: for(int i = 0; i < HEIGHT; i++) {
Loop2: for(int j = 0; j < WIDTH; j++) {
out[i][j] = in1[i][j] * in2[i][j];
Loop3: for(int k = 0; k < NUM_BITS; k++) {

}
}
}

UltraFast High-Level Productivity Design Methodology Guide 55
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=55

Chapter 4: C-Based IP Development
The data can typically be provided as arrays but it could be provided as a pointer or an
hls::stream. Pointers can be accessed multiple time using pointer arithmetic and an
hls::stream can be accessed multiple times within a function.

Another characteristic of frame based coding style is that the data will typically be accessed
and processed using loops. The code above shows a classic example of this.

When seeking to pipeline any C code, you want to place the pipeline directive at the level
where a sample of data is processed. Discussing this for each of the levels in the above
example helps explain the best to place the pipeline directive.

Function Level: The function accepts a frames of data as input (in1 and in2). If the function
is pipelined with II=1 - read a new set of inputs every clock cycle - this informs the tool to
read all HEIGHT*WIDTH values of in1 and in2 in a single clock cycle.

It is unlikely this is the design you want.

When a PIPELINE directive is applied, all loops in the hierarchy below this level, everything
below foo in this case, must be unrolled. This is a requirement for pipelining: there cannot
be sequential logic inside the pipeline. This would create HEIGHT*WIDTH*NUM_ELEMENT
copies of the logic: a large design.

The arrays can be implemented as multiple types of interface:

• Block-RAM interface (default)

• AXI interface

• AXI4-Lite interface

• AXI4-Stream interface

• FIFO interface

Since the data is accessed in a sequential manner, as an AXI4-Stream interface. two-way
handshake or FIFO interface. A block-RAM interface can be implemented as a dual-port
interface supplying two samples per clock. The other interface type can only supply one
sample per clock. This would create a bottleneck.

Step 3 of the HLS Optimization Methodology allows you to get past this bottleneck. To
access all data values in the same clock cycle the array must be partitioned into its
individual elements to create HEIGHT*WIDTH ports (or half that number if each port is a
dual-port block-RAM interface) allowing all ports be read in the same clock cycle. Similarly
for the output port.

Note: For more information about the optimization methodology, refer to Optimization
Methodology

It would be a highly parallel design, but it would be large.
UltraFast High-Level Productivity Design Methodology Guide 56
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=56

Chapter 4: C-Based IP Development
Loop1 Level: The logic in Loop1 processes an entire row of the two-dimensional matrix.
Placing the PIPELINE directive here would create a design which seeks to process one row
in each clock cycle. Again, this would unroll the loops below and create additional logic.

A large parallel design is not as fast and large as the first option.

Loop2 Level: The logic in Loops seek to process one sample from the arrays. This is the
level to pipeline if the design is to process one sample per clock cycle.

This causes Loop3 to be completely unrolled but since Loop2 is processing one sample per
clock, this is a requirement and typically necessary. In a typical design, the logic in Loop3 is
typically a shift register or processing bits within a word. To execute at one sample per
clock, you want these processes to occur in parallel and hence you want to unroll the loop.

This design processes one data sample per clock and creates parallel logic only where
required to achieve this level of data throughput.

Loop3 Level: As stated above, in this case the logic in Loop3 will typically be doing bit-level
or data shifting tasks - the level above that is operating on each data sample. For example,
if Loop3 contained a shift register operation and Loop3 is pipelined, this would inform the
tool to shift one data value every clock cycle. The design would only return to the logic in
Loop2 and read the next inputs when all samples have been shift.

The ideal location to pipeline in this example is Loop2.

When dealing with frame based code you will want to pipeline at the loop level and typically
pipeline the loop which operates at the level of a sample. If in doubt, place a print command
into the C code and use C simulation to confirm this is the level you wish to execute on each
clock cycle.

As detailed above, it is typical in a Frame based design to use the ARRAY_PARTITION
directive to partition arrays into smaller blocks (or multiple ports for arrays on the interface)
to remove bottlenecks to performance.

Sample Based C Code
An example outline of Sample based C code is shown below. The primary characteristic of
this coding style is the function processes a single data sample during each transaction.

void foo (data_t *in, data_t *out) {

static data_t acc;

Loop1: for (int i=N-1;i>=0;i--) {
acc+= ..some calculation..;
}

*out=acc>>N;
}

UltraFast High-Level Productivity Design Methodology Guide 57
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=57

Chapter 4: C-Based IP Development
In a sample-based function the data is provided as a scalar, a pointer or an hls::stream
variable.

A pointer or hls::stream may be accessed multiple times within a function but in a
sample-based function they should only be accessed once.

Another characteristic of sample based coding style is that the function often contains a
static variable: a variable whose value must be remembered between invocations of the
function, such as an accumulator or sample counter.

To achieve an II=1, reading one data value each clock cycle, the function must be pipelined.
This will unroll any loops and create additional logic but there is no way around this. If
Loop1 is pipelined, it will take a minimum of N clock cycles to complete. Only then can the
function can read the next x input value.

When dealing with C code which processes at the sample level, the strategy is always to
pipeline the function. Since loops in a sample based design are typically operating on arrays
performing a shift register function, it is not uncommon to partition these arrays into
individual elements to ensure all samples are shifted in a single clock cycle: else the shift
operation will be limited to reading and writing the samples to a dual-port block-RAM.

The solution here is to pipeline function foo. Doing so results in a design which processes
one sample per clock.

RTL Verification
The RTL verification process within Vivado HLS is fully automated. During RTL/C
co-simulation the same C test bench used in C simulation is re-used and the synthesized
function is replaced by the RTL design. The sequencing of data, into and out of the RTL
design using the correct interface protocols, is performed automatically by Vivado HLS.

Because the C test bench is re-used, an RTL test bench does not need to be created.

There are a few design choices which might prevent RTL/C co-simulation being available. To
perform a RTL/C co-simulation the following conditions must be true.

• The top-level function must be synthesized using an ap_ctrl_hs or ap_ctrl_chain
block-level interface.

• Or the design must be purely combinational.

• Or the top-level function must have an initiation interval of 1.

• Or the interface must be all arrays that are streaming and implemented with ap_fifo,
ap_hs, or axis interface modes.

If one of these conditions is not met, C/RTL co-simulation halts with the following message:
UltraFast High-Level Productivity Design Methodology Guide 58
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=58

Chapter 4: C-Based IP Development
@E [SIM-345] Cosim only supports the following 'ap_ctrl_none' designs: (1)
combinational designs; (2) pipelined design with task interval of 1; (3) designs with
array streaming or hls_stream ports.
@E [SIM-4] *** C/RTL co-simulation finished: FAIL ***

IP Packaging
Once the design is completed, an IP Package suitable for the IP Catalog is created using the
Export RTL feature of Vivado HLS. For design which include an AXI4-Lite interface, the IP
package contains the necessary software driver files to program the interface.

Vivado HLS provides multiple packing options. To use a productive IP Integrator
methodology, the IP Catalog format should be used and the interfaces should be AXI
interfaces.

Design Analysis and Optimization
A necessary part of any design methodology is using a productive process for design
analysis and improvement. The process for using Vivado HLS for C simulation, C debug,
synthesis, analysis, RTL verification and IP packaging is described at this link in the Vivado
Design Suite User Guide: High-Level Synthesis (UG902) [Ref 2].

The process for generating the design and improving its performance can be summarized
as:

• Simulate the C code and validate the design is correct.

• Synthesize an initial design.

• Analyze the design performance.

• Create a new solution and add optimization directives.

• Analyze the performance of the new solution

• Continue creating new solutions and optimization directives until the requirements are
satisfied.

• Verify the RTL is correct.

• Package the design as IP and include it into your system.

The most productive methodology is one that uses C simulation to both validate the design
and confirm the results are correct before synthesis. The benefit of C simulation speed is
the major advantage of a high-level design flow. Confirming the correctness of the C design
is a much more productive use of your time than debugging performance issues which turn
out to be due an incorrect specification.
UltraFast High-Level Productivity Design Methodology Guide 59
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf;a=xUsingVivadoHLS
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=59

Chapter 4: C-Based IP Development
Ensuring Useful Reports
After the initial synthesis results are achieved, the first step is to review the results. If the
synthesis report contains any unknown values (shown as a question mark “?”) they must be
addressed. To determine if optimization directives improve the design performance, it is
crucial to be able to compare the solutions: the latency must have known values for
comparison.

If a loop has variable bounds, Vivado HLS cannot determine the number of iterations for the
loop to complete. Even if the latency of one iteration of the loop is known, it cannot
determine the latency to complete all iterations of the loop due to the variable bounds.

Review the loops in the design. In the synthesis report, review the loops in the Latency >
Details > Loops section. Start with the lowest level loop in the loop hierarchy which reports
an unknown latency as this unknown propagates up the hierarchy. The loop or loops can be
in lower levels of hierarchy. Review the Latency > Details > Instance section of the report
to determine if any sub-functions show unknown values. Open the report for any functions
which show unknown latency values and repeat the process until the loop or loops have
been identified.

An alternative to using the synthesis report is to use the Analysis perspective.

After you identify the variable bound loops, add a LOOP_TRIPCOUNT directive to specify
the loop iteration count, or use assertions in the C code to specify the limits. For more
information, refer to this link in the Vivado Design Suite User Guide: High-Level Synthesis
(UG902) [Ref 2].

If you are using the LOOP_TRIPCOUNT directive, consider adding the directive to the source
code as a pragma, because this directive is required in every solution.

If you are aware of other loops with variables bounds, provide iteration limits for these
loops, otherwise repeat synthesis and use the same bottom up process until the top-level
report contains real numbers.

Design Analysis
Design analysis can be performed using three different techniques.

• The synthesis reports.

• The analysis perspective.

• RTL simulation waveforms.

TIP: Before analyzing the results, review the console window or log file to see what optimizations where
performed, skipped or failed.
UltraFast High-Level Productivity Design Methodology Guide 60
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf;a=xAssertions
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=60

Chapter 4: C-Based IP Development
The synthesis reports and analysis perspective can be used to analyze the latency, interval
and resource estimates. If there is now more than one solution, use the compare reports
button in the GUI to compare the solutions side-by-side. This feature, like the analysis
perspective, is only available in the GUI but remember that projects created using
batch-mode can be opened for analysis in the GUI using vivado_hls -p
project_name.

Again, a hierarchical approach is useful. Start at the top-level and determine which tasks
contribute the most to either the latency, interval, or area, and examine those tasks in more
detail. Recursively move down the hierarchy until you find a loop or function which you
think could or should be performing better to achieve your goals. When these functions or
loops are improved, the improvements will ripple up the hierarchy.

The analysis perspective allows for much easier migration up and down the design
hierarchy than the synthesis reports. In addition the analysis perspective provides a detailed
view of the scheduled operations and resource usage which can be cross-correlated with
the C code.

It can be useful when using the detailed schedule views in the analysis perspective to first
look at the macro-level behavior before diving into the details. The operations are typically
listed in the order the code executes. Keep in mind, Vivado HLS will try to schedule
everything into clock cycle 1 and be finished in 1 clock cycle if it can.

• If you see a general drift in the operations from the top-left to the bottom-right, it is
probably due to data dependencies or the execution of tasks inherent in the code. Each
needs the operation before to complete before it can start.

• If you see operations scheduled one after then other, then the sudden execution of
many items in parallel, or vice-versa, it probably indicates a bottleneck (such as I/O
ports or RAM ports) where the design has to wait, and wait, then everything can
execute in parallel.

In addition to the synthesis reports and analysis perspective, the RTL simulation waveforms
can be used to help analyze the design. During RTL verification the trace files can be saved
and viewed using an appropriate viewer. Refer to the tutorial on RTL verification in the
Vivado Design Suite Tutorial: High-Level Synthesis (UG871) [Ref 3] for more details.
Alternatively, export the IP package and open the Vivado RTL project in the
project_name/solution_name/impl/ip/verilog or vhdl folder. If C/RTL
co-simulation has been executed, this project will contain an RTL test bench.

Be very careful investing time in using the RTL for design analysis. If you change the C code
or add an optimization directive you will likely get a very different RTL design with very
different names when synthesis is re-executed. Any time spent in understanding the RTL
details will likely need repeated every time a new design is generated and very different
names and structures are used.

In summary, work down the hierarchy to identify tasks which could be further optimized.
UltraFast High-Level Productivity Design Methodology Guide 61
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=61

Chapter 4: C-Based IP Development
Design Optimizations
Before performing any optimizations it is recommended to create a new solution within the
project. Solutions allow one set of results to be compared against a different set of results.
They allow you to compare not only the results, but also the log files and even output RTL
files.

The basic optimization strategy for a high-performance design is:

• Create an initial or baseline design.

• Pipeline the loops and functions.

• Address any issues which limit pipelining, such as array bottlenecks and loop
dependencies (with ARRAY_PARTITION and DEPENDENCE directives).

• Apply the DATAFLOW optimization to execute loops and functions concurrently.

• It might sometimes be necessary to make adjustments to the code to meet
performance.

• Reduce the size of the dataflow memory channels and use the ALLOCATION and
RESOUCES directives to further reduce area.

In summary, the goal is to always meet performance first, before reducing area. If the
strategy is to create a design with fewer resources, then simply omit the steps to improving
performance.

Throughout the optimization process it is highly recommended to review the console
output (or log file) after synthesis. When Vivado HLS cannot reach the specified
performance goals of an optimization, it will automatically relax the goals (except the clock
frequency) and create a design with the goals which can be satisfied. It is important to
review the output from the synthesis to understand what optimizations have been
performed.

For specific details on applying optimizations, refer to the Vivado Design Suite User Guide:
High-Level Synthesis (UG902) [Ref 2].
UltraFast High-Level Productivity Design Methodology Guide 62
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=62

Chapter 5

System Integration

Overview
As with the development of the shell design, the key to a productive system integration
methodology is to make use of the Vivado® IP Catalog and IP integrator. If the earlier steps
in the high-level design methodology were followed, this stage of the design process
includes the following:

• A pre-verified shell. The board-level interface has been developed and successfully
verified.

• A collection of pre-verified IP blocks representing the core functionality of the design,
packaged for the Vivado IP Catalog.

• AXI Interfaces used for the IP level interfaces, enabling the Designer Assistance feature
of IP integrator to automate design creation.

• A system-level test bench, already created to verify the shell.

The system components, developed and verified in parallel, are now ready for system
integration.

After the initial system integration, you have everything required to automate this entire
flow and easily generate additional new designs.

Initial System Integration
The design integration process can be summarized as follows:

1. Create a new Vivado project based on the shell design

2. Add all the IP blocks, using IP integrator to connect the IP

3. Verify the system and processing the design through implementation to an FPGA
bitstream.
UltraFast High-Level Productivity Design Methodology Guide 63
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=63

Chapter 5: System Integration
System Integration Project
A new system design integration project is created using one of the reference shell designs
as follows:

1. Open the Vivado project for the shell design and select File > Save Project As to save
the shell design in a new project.

2. Create a new Vivado RTL project (with no RTL sources) and the same target device or
board. Then select Create Block Design, and in the console, source the Tcl script saved
using write_bd_tcl to regenerate the shell Block Design in the new project.

3. Add all the core design IP blocks to the project IP repository.

Automated System Integration
IP integrator provides Designer Assistance to help integrate the system. The recommended
strategy is to open the shell design and add all the IP blocks to the canvas. If AXI Interfaces
are being used for all IP and shell interfaces, the Designer Assistance feature activates with
recommendations for connections.

Designer Assistance recognizes which connections are legal. In addition to simply
automating connections, it is able to automatically add any required AXI interconnect logic,
such as connecting an AXI4-Stream interface to an AXI memory mapped port. For a
complete description of the Designer Assistance feature, refer to this link in the Vivado
Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994) [Ref 8].

TRAINING: If multiple clock domains are used in the design, refer to the Vivado Design Suite
QuickTake Video: Using Multiple Clock Domains in Vivado IP Integrator.

Complete the block design by making the connections that are not supported for designer
assistance, such as scalar signals and any non-AXI bus interfaces.

Finally, use the validate design feature to ensure that there are no design rule violations in
the design. For designs that use memory mapped interfaces or processors, refer to this link
in the Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
[Ref 8].

Xilinx® recommends that you use the write_bd_tcl command when the design is
complete and has been successfully validated. The write_bd_tcl command saves
everything required to re-generate the completed system in a Tcl file.
UltraFast High-Level Productivity Design Methodology Guide 64
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug994-vivado-ip-subsystems.pdf;a=xUsingTheDesignerAssistanceFeature
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/multiple-clock-domains-vivado-ip-integrator.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/multiple-clock-domains-vivado-ip-integrator.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug994-vivado-ip-subsystems.pdf;a=xCreatingaMemoryMap
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=64

Chapter 5: System Integration
System Verification and Implementation
When the system block design is complete in IP integrator, you can process the complete
system for verification and implementation by generating output products and creating a
top-level HDL wrapper for the design. The complete flow for using IP integrator in this
manner is shown in the following sections of the Vivado Design Suite Tutorial: High-Level
Synthesis (UG871) [Ref 3]:

• Chapter 9, “Using HLS IP in IP Integrator”

• Chapter 10, “Using HLS IP in a Zynq SoC Design”

System level verification is now performed using the same RTL test bench created for the
shell verification. The individual parts—the IP blocks and the shell design—have been
pre-verified in isolation. The task is now to verify the complete system. Focus your initial
efforts in confirming the system-level connections by doing the following:

1. Ensure that the shell is correctly supplying data to the inputs of the first block in the
processing pipeline.

2. Ensure that the first block is correctly providing outputs to the next block.

Note: Use minimal amounts of data to ensure that the system level simulation runs as quickly as
possible. Your initial focus here should simply be on confirming block connectivity.

After the top-level connectivity is verified a complete and detailed system simulation can
be performed.

IMPORTANT: As discussed in Automated System Integration, below, this advanced methodology
provides an effective method to quickly re-design any IP that fails system level verification and then
quickly regenerate the entire system in a highly scripted manner.

When the system is fully verified, the design can be implemented to bitstream. If most of
the design IP is created from C/C++ using Vivado HLS, the RTL has been automatically
timed to ensure it meets timing during RTL synthesis.

Note: If there are timing paths between IP blocks that fail to meet timing after RTL synthesis,
consider using the INTERFACE directive during HLS to register the interface ports.

To help improve runtime, consider using the Out of Context per IP mode when generating
the Output Products. This option generates a synthesized output product, which is cached,
and synthesis will only be re-executed if the IP block is changed, reducing the system
implementation time.
UltraFast High-Level Productivity Design Methodology Guide 65
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=65

Chapter 5: System Integration
Automated System Integration
Although it might be a cause for concern that it is only at the system integration stage that
a complete system level verification is performed, this is in fact one of the benefits of this
methodology. A complete system-level simulation in RTL might take some time to complete
and it is typically the execution of many such simulations during the development of a
project that is the greatest time sink.

This methodology places importance on:

• Parallel development

• Verification of the design IP using C/C++ simulation to achieve orders of magnitude
verification speed increase

• Creation and verification of block-level IP

• Reuse of existing and verified IP

This methodology is so effective because of the high degree of automation provided in the
Vivado Design Suite. This section demonstrates how the entire system can be quickly and
easily re-created using Tcl scripts, even if an issue is found when the system is integrated.

Vivado Project Automation
All actions performed in the Vivado IDE are captured as Tcl commands in the project journal
file. These commands allow you to repeat all actions in batch mode, significantly reducing
the time taken to perform the tasks. This auto-generation of Tcl commands allows the
following tasks in this methodology to be highly automated:

• Project creation

• Adding IP to the project

• System simulation

• System implementation
UltraFast High-Level Productivity Design Methodology Guide 66
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=66

Chapter 5: System Integration
The following code sample shows how easy it is to fully automate the process of creating a
project, adding IP repositories to the project, creating a block design, and processing the
project through to bitstream.

Set project parameters
set my_part xc7z020clg484-1
set my_board_part xilinx.com:zc702:part0:1.0

Set the paths to auto-adjust to the local directory
Define project and IP repository locations
set my_files [pwd]
set projdir $my_files/project_1
set repo_dir $my_files/../my_ip/ip
puts "Using project directory $projdir"
puts "Using repository directory $repo_dir"

Create the Project
set projname project_1
create_project -force $projname $projdir -part $my_part
set_property board_part $my_board_part [current_project]

Create IP repository
set_property ip_repo_paths $repo_dir [current_fileset]
update_ip_catalog -rebuild

Create the block design
source ./design_IPI.tcl

Create output products and HDL wrapper
generate_target all [get_files
$projdir/$projname.srcs/sources_1/bd/$design_name/$design_name.bd]
make_wrapper -files [get_files
$projdir/$projname.srcs/sources_1/bd/$design_name/$design_name.bd] -top
add_files -norecurse
$projdir/$projname.srcs/sources_1/bd/$design_name/hdl/${design_name}_wrapper.v
update_compile_order -fileset sources_1
update_compile_order -fileset sim_1

Implement the bitstream
launch_runs impl_1 -to_step write_bitstream
wait_on_run impl_1

The Tcl commands to perform the above actions are simply copied from the project journal
file. Alternately, you can use Save > Write Project Tcl to easily script the flow inside Vivado
and automate the processes of shell creation, shell verification, and system integration.
UltraFast High-Level Productivity Design Methodology Guide 67
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=67

Chapter 5: System Integration
Vivado HLS Automation
Vivado HLS creates a Tcl file for every project created using the IDE. The code sample below
shows the Tcl commands for all steps in the C design flow: simulating the C code,
synthesizing the C code with optimization directives, verifying that the RTL is correct, and
creating an IP package and confirming that RTL synthesis meets timing.

Create a project and add files
open_project proj_matrixmul
set_top DESIGN_TOP
add_files matrixmul.cpp
add_files -tb matrixmul_tb.cpp

Create a solution
open_solution "fast"
set_part {xc7z020clg484-1}
create_clock -period 4 -name default

Add optimization directives
set_directive_pipeline "cholesky/"
set_directive_array_reshape -type complete -dim 2 "matrixmul" a
set_directive_array_reshape -type complete -dim 1 "matrixmul" b

Simulate, Synthesize, Verify and package outputs
csim_design
csynth_design
cosim_design
export_design -format ip_catalog -evaluate verilog

This automatically generated Tcl file can be edited to provide automation for any part of the
C IP development flow. For example, scripts can be created to perform only C simulation.
When the design is validated, a complete script like the above can be used to synthesize the
design through to a packaged IP.

IP Integrator Automation
The IP integrator write_bd_tcl command not only saves a Tcl script to replay your
actions, it also optimizes the script to only create the final block design. Simply executing
the script will re-create the block design. The block design is re-created using the IP in the
IP repository, so if the IP has been updated, the latest IP is used. This level of automation
enables you to quickly re-create block designs:

• The shell design can be re-generated in a new design project, modifications performed,
and a new shell easily created.

• The shell design can be re-generated in a new verification project, and verification IP
easily added to the design.

• The shell design can be re-generated in the system integration project and the core
design IP integrated into the system.

Each step in the entire methodology can be re-performed in an efficient productive manner.
UltraFast High-Level Productivity Design Methodology Guide 68
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=68

Chapter 5: System Integration
Complete System Automation
Further productivity advantages can be realized by executing scripts using a Makefile. A
Makefile specifies a set of dependencies. For example, the following tasks must be
performed in order:

• Task A: Simulate an IP in C.

• Task B: Synthesize the IP to the IP Catalog.

• Task C: Integrate the IP into the system level.

When a Makefile is used to execute task C, it automatically checks to determine if the
outputs from task B are present. If they are not present, it will seek to execute task B and
check to see if the outputs from task A are present, and so on.

Using a Makefile to execute Tcl scripts similar to those shown above, it is therefore possible
to simply update any IP or the shell design and issue a single command to re-create the
entire system, stopping for any of the following:

• To review the results of C simulation

• To re-create the shell design to add verification IP

• To re-synthesize an IP, verify the IP with RTL simulation, and re-build the system.

• After the FPGA has been programmed.

This level of automation links everything in the methodology into a highly productive flow,
and is the reason that the parts of the methodology can be performed in parallel and wait
until system integration to perform system-level simulations. After the first version of the
system is created, the entire generation of the system is fully automated.

Designing for the Future
The final benefit of using a high-level productivity design methodology is how easily
derivative designs can be created from the initial design. The two primary enablers of this
productivity boost are:

• Developing IP from C

• Using the automated implementation flow

Developing IP from C
In addition to the primary advantages of using C for IP development that are outlined in this
guide, another advantage is the easy path to design re-targeting: creating derivative
designs from the same source.
UltraFast High-Level Productivity Design Methodology Guide 69
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=69

Chapter 5: System Integration
In the Vivado HLS scripting example above, the following Tcl commands were used to target
a Zynq®-7000 SoC device with a 250 MHz clock:

set_part {xc7z020clg484-1}
create_clock -period 4 -name default

To create an IP block that is accurately timed for implementation in, for example, a Kintex®
UltraScale™ device at 300 MHz, the changes are simply to update the optimization
constraints:

set_part {xcku025-ffva1156-2-i}
create_clock -period 300MHz -name default

Nothing else needs to change. Vivado HLS simply creates a design implemented at the
selected frequency in the target technology. The design might take fewer clock cycles to
complete in a faster technology (and conversely, more in a slower technology) but no
re-coding or re-optimization is necessary.

The greater the content created from C code, the more easily the design can targeted to a
newer technology and/or clock frequency. Legacy RTL blocks might still need to be
re-implemented to accommodate the different timing parameters.

Automated Implementation Flow
If the FPGA is implemented in a fully scripted flow, you can further improve design reuse
and improve productivity when creating derivative design by parametrizing your scripts.

In the scripting examples shown above, the following code is used. This example uses the
Vivado script; the same enhancement can be performed on the Vivado HLS and IP
integrator scripts.

Set project parameters
set my_part xc7z020clg484-1
set my_board_part xilinx.com:zc702:part0:1.0

To set everything in the project by a single top-level project parameters script, change the
previous code to match the following:

source project-level parameters
source project_top.tcl
Set project parameters
set my_part $target_device
set my_board_part $target_board

In this example, the contents of project_top.tcl are:

set target_device xc7z020clg484-1
set target_board xilinx.com:zc702:part0:1.0

Modifying this single script causes the project to be re-targeted and re-implemented in a
highly automated manner.
UltraFast High-Level Productivity Design Methodology Guide 70
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=70

Chapter 5: System Integration
Some additional notes about this:

• If you follow the recommendations on C test benches, the C simulation is automatically
checked.

• Vivado HLS generates new IP based on the new parameters.

• The RTL created by Vivado HLS is automatically verified by RTL simulation.

• The Vivado project generation scripts create a new project based on the update
parameters.

• The IP integrator scripts connect the blocks as before and designer automation will use
the most appropriate connections.

• You can choose to pause the flow at the system integration step and modify the design.

• The completed system is implemented to bitstream using the update target device and
clock frequency.

Enhancing your Tcl scripts to accommodate a degree of parametrization will greatly
enhance the ability of your organization to create design derivatives in a nearly turn-key
manner.
UltraFast High-Level Productivity Design Methodology Guide 71
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=71

Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter: docnav

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.
UltraFast High-Level Productivity Design Methodology Guide 72
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=72

Appendix A: Additional Resources and Legal Notices
References
1. Introduction to FPGA Design with Vivado® High-Level Synthesis (UG998)

2. Vivado Design Suite User Guide: High-Level Synthesis (UG902)

3. Vivado Design Suite Tutorial: High-Level Synthesis (UG871)

4. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

5. Vivado Design Suite Tutorial: Creating and Packaging Custom IP (UG1119)

6. Vivado Design Suite User Guide: Model-Based DSP Design Using System Generator
(UG897)

7. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)

8. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

9. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

10. Methods for Integrating AXI4-based IP Using Vivado IP Integrator (XAPP1204)

11. Vivado Design Suite Documentation

12. Xilinx Intellectual Property Page

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. C-based Design: High-Level Synthesis with the Vivado HLS Tool Training Course

2. C-based HLS Coding for Hardware Designers Training Course

3. C-based HLS Coding for Software Designers Training Course

4. Vivado Design Suite QuickTake Video Tutorials

5. Vivado Design Suite QuickTake Video: Vivado High-Level Synthesis

6. Vivado Design Suite QuickTake Video: Getting Started with High-Level Synthesis

7. Vivado Design Suite QuickTake Video: Verifying your Vivado HLS Design

8. Vivado Design Suite QuickTake Video: Creating Different Types of Projects
UltraFast High-Level Productivity Design Methodology Guide 73
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/verifying-your-vivado-hls-design.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/getting-started-vivado-high-level-synthesis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/creating-different-types-of-projects.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug1119-vivado-creating-packaging-ip-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug897-vivado-sysgen-user.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/high-level-synthesis-with-vivado-hls.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/c-based-hld-coding-for-hardware-designers.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/c-based-hld-coding-for-software-designers.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-high-level-synthesis.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1204-integrating-axi4-ip-using-ip-integrator.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.3;d=ug871-vivado-high-level-synthesis-tutorial.pdf
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=73

Appendix A: Additional Resources and Legal Notices
Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2015 - 2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.
UltraFast High-Level Productivity Design Methodology Guide 74
UG1197 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback
UG1197 (v2018.3) December 5, 2018

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback.html?docType=Methodology_Guides&docId=UG1197&Title=UltraFast%20High%20Level%20Productivity%20Design%20Methodology%20Guide&releaseVersion=2018.3&docPage=74

	UltraFast High Level Productivity Design Methodology Guide
	Revision History
	Table of Contents
	Ch. 1: High-Level Productivity Design Methodology
	About This Guide
	Need for a New Design Methodology
	Traditional Methodology
	High-Level Productivity Design Methodology

	Design Process
	Accessing Documentation and Training
	Using the Documentation Navigator

	Ch. 2: System Design
	Overview
	System Partitioning
	Shell Design
	IP Design

	System Development
	Vivado IP Catalog
	IP Integrator and Standard Interfaces

	Ch. 3: Shell Development
	Overview
	Shell Design
	Assemble Existing IP
	Shell Design Project

	Shell Verification
	Shell Verification Projects
	Verification IP
	Verifying the Shell

	Ch. 4: C-Based IP Development
	Overview
	Fast C Verification
	C Test Bench
	Self-Checking Test Bench
	Bit Accurate Data Types

	C Language Support for Synthesis
	Unsupported Constructs
	System Calls
	Dynamic Objects
	SystemC Constructs

	Constructs with Limited Support
	Top-Level Function
	Pointer Support
	Recursion
	Memory Functions

	Using Hardware Optimized C Libraries
	Understanding Vivado HLS
	Measuring Performance
	Interface Synthesis
	Function Synthesis
	Loop Synthesis
	Logic Synthesis
	Array Synthesis
	Pipelining Functions, Loops, and Tasks
	Vivado HLS Resources

	Optimization Methodology
	The HLS Optimization Methodology
	Step 1: Initial Optimizations
	Step 2: Pipeline for Performance
	Step 3: Optimize Structures for Performance
	Step 4: Reduce Latency
	Step 5: Reducing Area

	Optimization Strategies
	Frame Based C Code
	Sample Based C Code

	RTL Verification
	IP Packaging
	Design Analysis and Optimization
	Ensuring Useful Reports
	Design Analysis
	Design Optimizations

	Ch. 5: System Integration
	Overview
	Initial System Integration
	System Integration Project
	Automated System Integration
	System Verification and Implementation

	Automated System Integration
	Vivado Project Automation
	Vivado HLS Automation
	IP Integrator Automation
	Complete System Automation

	Designing for the Future
	Developing IP from C
	Automated Implementation Flow

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

